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The problem of fluid motions in the form of inertial waves or inertial oscillations
in an incompressible viscous fluid contained in a rotating spheroidal cavity was
first formulated and studied by Poincaré (1885) and Bryan (1889). Upon realizing
the limitation of Bryan’s implicit solution using complicated modified spheroidal
coordinates, Kudlick (1966) proposed a procedure that may be used to compute
an explicit solution in spheroidal coordinates. However, the procedure requires an
analytical expression for the N real and distinct roots of a polynomial of degree N ,
where N is a key parameter in the problem. When 0 � N � 2, an explicit solution can
be derived by using Kudlick’s procedure. When 3 � N � 4, the procedure cannot be
practically used because the analytical expression for the N distinct roots becomes
too complicated. When N > 4, Kudlick’s procedure cannot be used because of the
non-existence of an analytical expression for the N distinct roots. For the inertial wave
problem, Kudlick thus restricted his analysis to several modes for 1 � N � 2 with the
azimuthal wavenumbers 1 � m � 2. We have found the first explicit general analytical
solution of this classical problem valid for 0 � N < ∞ and 0 � m < ∞. The explicit
general solution in spheroidal polar coordinates represents a possibly complete set
of the inertial modes in an oblate spheroid of arbitrary eccentricity. The problem is
solved by a perturbation analysis. In the first approximation, the effect of viscosity
on inertial waves or oscillations is neglected and the corresponding inviscid solution,
the pressure and the three velocity components in explicit spheroidal coordinates, is
obtained. In the next approximation, the effect of viscous dissipation on the inviscid
solution is examined. We have derived the first explicit general solution for the
viscous spheroidal boundary layer valid for all inertial modes. The boundary-layer
flux provides the solvability condition that is required to solve the higher-order interior
problem, leading to an explicit general expression for the viscous correction of all
inertial modes in a rapidly rotating, general spheroidal cavity. On the basis of the
general explicit solution, some unusual and intriguing properties of the spheroidal
inertial waves or oscillation are discovered. In particular, we are able to show
that ∫

V

(u · ∇2u) dV ≡ 0,

where u is the velocity of any three-dimensional inviscid inertial waves or oscillations
in an oblate spheroid of arbitrary eccentricity and

∫
V

denotes three-dimensional
integration over the volume of the spheroidal cavity.
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1. Introduction
As a consequence of rapid rotation, many astrophysical and planetary fluids are

confined in oblate spheroidal cavities in which the flow may be assumed to be inviscid
in the first approximation and is then corrected by a thin Ekman boundary layer
near the surface of the spheroidal cavity (Stewartson & Roberts 1963). Motivated
by geophysical and astrophysical applications, the subject of fluid motions in the
form of non-axisymmetric inertial waves or axisymmetric inertial oscillations in a
rotating spherical or spheroidal cavity has received considerable attention for a
very long time. The mathematical problem describing the inviscid inertial wave and
oscillation was formulated more than a century ago by Poincaré in 1885. Bryan (1889)
obtained a general implicit solution for the inviscid inertial modes using modified
oblate spheroidal coordinates (see also Lyttleton 1953). Stewartson & Roberts (1963)
considered the flow in an oblate cavity of a precessing rigid body and calculated
the viscous correction for a particular inertial wave mode, the spin-over mode.
Greenspan (1964) discussed many important properties of inertial waves in rotating
fluids. Roberts & Stewartson (1965) examined an initial-value problem of a rotating
spheroid in which the axis of rotation is impulsively moved. They presented a detailed
analysis on the effect of viscosity through the Ekman boundary layer in an oblate
spheroidal cavity. For an account of the earlier results and more references, see the
excellent monograph by Greenspan (1968).

The stability properties of the Poincaré constant-vorticity solution in an oblate
spheroid was examined in detail by Kerswell (1993). He also studied the effect of
an azimuthal magnetic field on the Poincaré mode and estimated its Ohmic and
viscous decay rates (Kerswell 1994; see also Malkus 1967). By accurately solving
the full governing equations numerically, Hollerbach & Kerswell (1995) obtained the
viscous decay rate of the Poincaré inertial mode (the spin-over mode) in spherical
geometry, demonstrating convincingly that the breakdown of the oscillatory Ekman
layer at critical latitudes, which leads to the weak internal shear layers (Rieutord &
Valdettaro 1997), does not significantly affect the viscous decay rate. An explicit
general analytical expression for all the inertial waves in a rotating sphere was found
by Zhang et al. (2001) and the viscous effect on the spherical inertial waves was
discussed by Liao, Zhang & Earnshaw (2001).

The problem of inertial waves and oscillations in a rapidly rotating spheroidal cavity
was briefly discussed by Kudlick (1966, pp. 32–39). The main result of his investigation
was summarized by Greenspan (1968). The focus of Kudlick’s discussion was on a
numerical procedure that may be used to compute an explicit solution for the Poincaré
equation in spheroidal coordinates (see § 2.4 this paper for detail). However, a key
stage of the procedure requires an analytical expression for the N real and distinct
roots of a polynomial of degree N , where N is an important integer parameter in the
solution. A small N usually corresponds to an inertial mode with the simple spatial
structure. For example, the spin-over mode, which represents the spatially simplest
inertial wave, is given by N = 0. When N � 2, an explicit solution in spheroidal
coordinates for the inertial wave may be derived by using Kudlick’s procedure. When
3 � N � 4, the procedure cannot be practically used because the analytical expression
for the N distinct roots becomes too complicated. When N > 4, Kudlick’s procedure
cannot be used because of the non-existence of an analytic expression for the N

distinct roots. In consequence, Kudlick (1966) restricted his analysis to several modes
with 1 � N � 2 and the azimuthal wavenumbers 1 � m � 2 in his investigation of
spheroidal inertial waves.
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We believe that this paper represents a major breakthrough in this classical
problem. For the first time, we have found an explicit general analytical solution for
a possibly complete set of the eigenfunctions (0 � N < ∞ and 0 � m < ∞) representing
non-axisymmetric inertial waves and axisymmetric inertial oscillations in an oblate
spheroid of arbitrary eccentricity using explicit spheroidal coordinates in closed form.
An explicit general solution for the spheroidal Ekman boundary layer near the surface
of the cavity valid for all the inertial modes is derived to investigate the effect of
viscosity. It is also for the first time that an explicit general analytical expression
for the viscous corrections of all the inertial modes is found. On the basis of the
explicit general solution, we have discovered and proved some unusual and intriguing
properties of the problem which are shown in Appendix A.

We consider an incompressible viscous fluid contained in an oblate spheroidal
cavity which rotates with constant angular velocity ezΩ , where ez is a unit vector.
The envelope of the spheroidal cavity, S, is described by the equation

x2 + y2

a2
+

z2

b2
= 1, (1.1)

where a and b are the major and minor axes of an oblate spheroid (a > b), the z-axis
is parallel to the axis of rotation. An important parameter describing the geometry
of the oblate spheroid is its eccentricity defined as

ε =

√
(a2 − b2)

a2
(0 < ε < 1). (1.2)

The limit ε → 0 corresponds to a special case for a sphere. The problem of inertial
waves or oscillations in an incompressible viscous rotating fluid spheroid with constant
kinematic viscosity ν and uniform density ρ is governed by the following dimensionless
equations of the conservation of momentum and mass,

∂u
∂t

+ Rou · ∇u + 2ez × u = −∇p + E∇2u + f , (1.3)

∇ · u = 0, (1.4)

where u represents the velocity of three-dimensional flow, f is an external force and p

is the reduced pressure in which the centrifugal acceleration is included. The Ekman
number E, which provides the measure of relative importance between the typical
viscous force and the Coriolis force, is defined as

E =
ν

Ωa2
, (1.5)

which is usually extremely small, E � 1, for a planetary fluid core (Gubbins & Roberts
1987). The Rossby number defined as

Ro =
U

Ωa
, (1.6)

where U is a typical amplitude of the flow, provides an estimate for the importance
of the nonlinear term in (1.3). Furthermore, we have employed the following scales

r → ar, t → tΩ−1, u → Uu, p → pρaUΩ,

for length, time, velocity and pressure, respectively. In this study, the external force
f in (1.3) is assumed to be zero, corresponding to an unforced inertial wave
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problem (Greenspan 1968; Hollerbach & Kerswell 1995). We also assume the non-slip
boundary condition,

u = 0, (1.7)

on the envelope of the spheroidal cavity S. We further assume that the Rossby number
Ro is sufficiently small so that the nonlinear term u · ∇u in (1.3) can be neglected.

Multiplying (1.3) with the velocity u and integrating the resulting equation over the
spheroidal cavity V yield an energy equation

d

dt

(
1

2

∫
V

|u|2 dV

)
= E

∫
V

(u · ∇2u) dV < 0, (1.8)

provided that the non-slip condition (1.7) for the velocity is satisfied. The three-
dimensional integral on the right-hand side of (1.8), which is associated with the
dissipation function and is usually referred to as the dissipation integral, is generally
non-zero and negative. When u represents the velocity of a three-dimensional inviscid
inertial wave in a rotating sphere, however, it was shown by Zhang et al. (2001) that∫

V

(u · ∇2u) dV ≡ 0. (1.9)

It should be pointed out that the terminology, the dissipation integral, adopted
by Zhang et al. (2001) in the case of a sphere, may be confusing. Obviously, the
unphysical result represented by (1.9) is a consequence of the unphysical tangential
boundary condition for an inviscid inertial wave solution. Of course, the total viscous
dissipation cannot vanish if a velocity u in a spherical or spheroidal cavity satisfies
an appropriate physical tangential boundary condition such as the non-slip or the
stress-free. In this sense, (1.9) represents an intriguing and unusual mathematical
property of the fluid motion in the form of an inertial wave. This paper extends the
result (1.9) obtained in a sphere to a spheroid cavity, showing that (1.9) also holds for
all the inertial waves or oscillations in an oblate spheroid of arbitrary eccentricity.

In what follows, we shall first present a brief mathematical formulation in spheroidal
polar coordinates in § 2. An explicit solution for inertial oscillation modes in spheroidal
polar coordinates is derived in § 3 and an general explicit solution for inertial waves
in spheroidal polar coordinates is derived in § 4. In § 5, we discuss a general spheroidal
Ekman boundary solution near the surface of the spheroidal cavity. Section 6 examines
the viscous effect on the inertial waves and concluding remarks are given in § 7.

2. Governing equations in spheroidal polar systems
2.1. The coordinates transformation

Before presenting the detailed analysis in spheroidal polar coordinates, it is desirable
to discuss briefly the relevant metric tensor and the transformation between different
coordinates used in our analysis. We employ three coordinate systems: cylindrical
polar coordinates (s, φ, z), spheroidal polar coordinates (η, φ, τ ) and modified
spheroidal coordinates (X, φ, Y ). The three coordinate systems are defined by the
following relationships with the rectangular Cartesian coordinates (x, y, z)

x2 = s2 cos2 φ = (ε2 + η2)(1 − τ 2) cos2 φ, (2.1)

y2 = s2 sin2 φ = (ε2 + η2)(1 − τ 2) sin2 φ, (2.2)

z2 = η2τ 2, (2.3)
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and

x2 = A2(1 − X2)(1 − Y 2) cos2 φ, (2.4)

y2 = A2(1 − X2)(1 − Y 2) sin2 φ, (2.5)

z2 = B2X2Y 2, (2.6)

where A and B are a function of both the half-frequency, σ , of an inertial wave and
the eccentricity of a spheroid,

A2 =
1 − ε2σ 2

1 − σ 2
, B2 =

1 − ε2σ 2

σ 2
(−1 < σ < 1). (2.7)

The spheroidal envelope S of the cavity in spheroidal polar coordinates is described

by η =
√

(1 − ε2). Modified spheroidal polar coordinates (X, φ, Y ) are used in the
process of deriving an implicit solution while spheroidal polar coordinates (η, φ, τ ) are
adopted in the analysis of spheroidal Ekman boundary layers and in the evaluation
of the viscous correction of an inertial wave or oscillation. The analysis frequently
requires the transformation between different coordinates. Let us define a vector Q
as follows

Q = Qxex + Qyey + Qzez = Qses + Qφeφ + Qzez = Qηeη + Qφeφ + Qτ eτ , (2.8)

where ex, . . . , eτ denote unit vectors in the corresponding coordinates. A central
element in deriving the coordinates transformation is the fundamental metric tensor
gij for spheroidal polar coordinates

g11 = gηη =
η2 + ε2τ 2

η2 + ε2
,

g22 = gφφ = (η2 + ε2)(1 − τ 2),

g33 = gττ =
η2 + ε2τ 2

1 − τ 2
,

gij = 0 if i �= j.




(2.9)

The determinant of the metric tensor is

g = det[gij ] = (η2 + ε2τ 2)2. (2.10)

Making use of the fundamental metric tensor gij , we can establish that

[Qη, Qφ, Qτ ]
T = D[Qx, Qy, Qz]

T = DM[Qs, Qφ, Qz]
T , (2.11)

where matrices D and M of sizes 3 × 3 are

D =
1√

η2 + ε2τ 2




η cos φ
√

1 − τ 2 η sin φ
√

1 − τ 2 τ
√

η2 + ε2

− sinφ
√

η2 + ε2τ 2 cos φ
√

η2 + ε2τ 2 0

−τ cos φ
√

η2 + ε2 −τ sin φ
√

η2 + ε2 η
√

1 − τ 2




and

M =




cos φ − sin φ 0

sin φ cos φ 0

0 0 1


.

Based on the metric tensor gij and (2.11), for example, we can transform the unit
vector ez in cylindrical polar coordinates into a unit vector in spheroidal polar
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coordinates

ez = (ẑ1, ẑ2, ẑ3) = (ẑη, ẑφ, ẑτ ) =

(
τ
√

ε2 + η2√
η2 + ε2τ 2

, 0,
η

√
1 − τ 2√

η2 + ε2τ 2

)
; (2.12)

we can express the terms such as ez × u and ∇ × u using spheroidal polar coordinates

(ez × u)k =

3∑
l=1

3∑
m=1

√
gllgmmgkk√

g
eklmẑlum (k = 1, 2, 3), (2.13)

(∇ × u)k =

[
3∑

l=1

3∑
m=1

eklm

∂

∂xl

(um

√
gmm)

] √
gkk√
g

(k = 1, 2, 3), (2.14)

where eklm is the permutation symbol of rank three and

x1 = η, u1 = eη · u = uη; x2 = φ, u2 = eφ · u = uφ; x3 = τ, u3 = eτ · u = uτ .

Although the three coordinate systems are employed in various stages of the analysis,
we shall present our results mainly using spheroidal polar coordinates which are the
natural coordinates for a spheroidal problem and have to be adopted when the effect
of viscosity is studied.

As displayed in the metric tensor gij for spheroidal polar coordinates, there are three

terms,
√

η2 + ε2,
√

1 − τ 2 and
√

η2 + ε2τ 2, which appear frequently in our analytical
solutions. To simplify the presentation, we introduce the following notation

u =
√

η2 + ε2, v =
√

1 − τ 2, w =
√

η2 + ε2τ 2. (2.15)

2.2. Governing equations and perturbations

Using the fundamental metric tensor gij and neglecting the nonlinear term in (1.3)
controlled by the Rossby number, we can write the governing equations (1.3)–(1.4) in
spheroidal polar coordinates

w
∂uη

∂t
− 2ηvuφ + u

∂p

∂η
=

E

u

[
∂

∂τ
(uvΩφ) − ∂

∂φ

(
wΩτ

v

)]
, (2.16)

w
∂uτ

∂t
+ 2τuuφ + v

∂p

∂τ
=

E

v

[
∂

∂φ

(
wΩη

u

)
− ∂

∂η
(uvΩφ)

]
, (2.17)

w
∂uφ

∂t
+ 2(ηvuη − τuuτ ) +

w

uv

∂p

∂φ
=

Euv

w

[
∂

∂η

(
wΩτ

v

)
− ∂

∂τ

(
wΩη

u

)]
, (2.18)

uv

[
∂

∂η
(wuuη) +

∂

∂τ
(wvuτ )

]
+ w2 ∂uφ

∂φ
= 0, (2.19)

where

Ωη =
1

uv

∂uτ

∂φ
− 1

w

∂(vuφ)

∂τ
,

Ωτ =
1

w

∂(uuφ)

∂η
− 1

uv

∂uη

∂φ
, (2.20)

Ωφ =
v

w2

∂(wuη)

∂τ
− u

w2

∂(wuτ )

∂η
.
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The assumption of the non-slip boundary condition (1.7) on the surface of the
spheroidal container S corresponds to

uη = uφ = uη = 0 at η =
√

1 − ε2. (2.21)

Clearly, in the limiting case, ε → 0, for a sphere, η in spheroidal polar coordinates
becomes identical to r in spherical polar coordinates. This paper is mainly concerned
with solutions of (2.16)–(2.19) subject to the non-slip boundary condition (2.21) in a
rapidly rotating spheroid of arbitrary eccentricity.

It is important to note that the amplitude of the Ekman boundary-layer flow
with a non-slip boundary condition is of the same order as that of the mainstream
flow. In consequence, an explicit oscillatory boundary-layer solution is required in
order to determine the matching condition between the boundary layer and interior
solutions. The general idea for the asymptotic theory of inertial waves was discussed
by Greenspan (1968). For a sufficiently small E, fluid motions within a rotating
spheroidal cavity can be separated into the internal flow ui and the boundary-layer
flow ub. We may expand both the internal and boundary-layer flows in terms of small
but non-zero E

ui =
[
u0(η, τ ) + E1/2u1(η, τ ) + · · ·

]
ei(ωt+mφ), (2.22)

pi =
[
p0(η, τ ) + E1/2p1(η, τ ) + · · ·

]
ei(ωt+mφ), (2.23)

ub =
[
û0(η, τ ) + E1/2û1(η, τ ) + · · ·

]
ei(ωt+mφ), (2.24)

ω = 2σ − iGE1/2 + · · · , (2.25)

where m � 0 is the azimuthal wavenumber of an inertial mode, i=
√

−1, σ is the
half-frequency of a non-dissipative inertial wave and G represents the correction of
the frequency of a non-dissipative inertial wave due to the effect of viscosity.

2.3. The Poincaré equation in different coordinate systems

The leading-order mainstream problem describes non-dissipative inertial waves in a
rotating spheroidal cavity. Its governing equations are obtained by substituting the
expansions (2.22)–(2.23) and (2.25) into (2.16)–(2.19) and taking the leading-order
terms,

2iσwuη0 − 2ηvuφ0 + u
∂p0

∂η
= 0, (2.26)

2iσwuτ0 + 2τuuφ0 + v
∂p0

∂τ
= 0, (2.27)

2iσwuvuφ0 + 2(ηuv2uη0 − τu2vuτ0) + imwp0 = 0, (2.28)

uv

[
∂

∂η

(
wuuη0

)
+

∂

∂τ
(wvuτ0)

]
+ imw2uφ0 = 0, (2.29)

where

u0(η, τ ) = uη0eη + uφ0eφ + uτ0eτ .

The only boundary condition required in the leading approximation is

uη0 = 0 at η =
√

1 − ε2. (2.30)

For a further simplification in the presentation we introduce

(uη0, uφ0, uτ0)(η, τ ) = (iVη, Vφ, iVτ )(η, τ ) (2.31)

so that Vη, Vφ and Vτ are real functions of η and τ .
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It is well known that the elimination of the velocity components from (2.26)–(2.29)
leads to the Poincaré equation for the pressure p0, which may be written in three
different forms. In cylindrical polar coordinates (s, φ, z), the Poincaré equation has
the form (Greenspan 1968)(

1

s

∂p0

∂s
+

∂2p0

∂s2
− m2

s2
p0

)
+

(σ 2 − 1)

σ 2

∂2p0

∂z2
= 0. (2.32)

In spheroidal polar coordinates (η, φ, τ ), the Poincaré equation has the form

Cττ

∂2p0

∂τ 2
+ Cηη

∂2p0

∂η2
+ Cτ

∂p0

∂τ
+ Cη

∂p0

∂η
+ Cτη

∂2p0

∂τ∂η
+ C0p0 = 0, (2.33)

where

Cττ =
v2

w4

(
τ 2u2 +

(σ 2 − 1)

σ 2
η2v2

)
,

Cηη =
u2

w4

(
η2v2 +

(σ 2 − 1)

σ 2
τ 2u2

)
,

Cτ =
τ

w6
[−2w4 + u2v2(3η2 − τ 2ε2)]

+
(σ 2 − 1)

σ 2

(
v2

τw6

)
[w4 − η2w2(1 + τ 2) − 2η2τ 2(u2 + ε2v2)],

Cη =
η

w6
[2w4 + u2v2(3τ 2ε2 − η2)]

+
(σ 2 − 1)

σ 2

(
u2

ηw6

)
[w4 − τ 2w2(ε2 − η2) − 2η2τ 2(u2 + ε2v2)],

Cτη = −2τηu2v2

σ 2w4
,

C0 = − m2

u2v2
.

In modified spheroidal polar coordinates (X, Y ), Bryan (1889) showed that the
Poincaré equation can be written as

∂

∂X

[
(1 − X2)

∂p0

∂X

]
− ∂

∂Y

[
(1 − Y 2)

∂p0

∂Y

]
=

[
m2

(1 − X2)
− m2

(1 − Y 2)

]
p0. (2.34)

Bryan (1889) recognized the separable solution for (2.34) in the form

p0 = P m
l (X(η, τ ))P m

l (Y (η, τ )) (l � m), (2.35)

where P m
l is an associated Legendre function of the first kind and

X(η, τ ) =
1√

2AB
[∆ +

√
∆2 − (2A2Bητ )2]1/2, (2.36)

Y (η, τ ) =
1√

2AB
[∆ −

√
∆2 − (2A2Bητ )2]1/2, (2.37)

∆ = (AB)2 + (Aητ )2 − (Buv)2. (2.38)
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It is of importance to note that, in order to find solutions of (2.16)–(2.19) subject to
the non-slip boundary condition (2.21), we require solutions of the Poincaré equation
(2.33) in terms of explicit spheroidal coordinates (η, τ ).

2.4. Kudlick’s procedure

The Poincaré equation in the form (2.33) in spheroidal coordinates (η, τ ) is too
complicated to solve directly. However, the implicit solution (2.35) using modified
spheroidal polar coordinates (X, Y ), though mathematically compact, is not practically
useful because of the complex relationship (2.36)–(2.38). Upon realizing the limitation
of Bryan’s implicit solution (2.35), Kudlick (1966) proposed a procedure to compute an
explicit solution of the Poincaré equation in cylindrical coordinates. For equatorially
symmetric inertial waves (even modes), for example, he showed that p0 can be
expressed in the form of a summation of a double polynomial

p0(s, z) =
sm

α∗

N∏
k=1

(Dk + Aks
2 + Bkz

2), (2.39)

where

α∗ =
1 + ε∗(1 − σ 2)

(1 + ε∗)(1 − σ 2)
,

ε∗ =
ε√

1 − ε2
,

Dk = xk(xk − 1),

Ak =

(
1 + ε∗

1 + ε∗(1 − σ 2)

)
xk(1 − σ 2),

Bk =

(
1 + ε∗

1 + ε∗(1 − σ 2)

)
σ 2(1 − xk),

and xk, k = 1, 2, . . . , N, are the N distinct and real roots of the equation

N∑
j=0

(−1)j
[2(2N + m − j )]!

j![2(N − j )]!(2N + m − j )!
x

N−j
k = 0 (2.40)

exclusive of zero and one.
Kudlick’s procedure consists of the three steps: (i) solve (2.40) to find the N real

and distinct roots, xk, k = 1, 2, . . . , N , (ii) substitute the N roots into (2.39) to obtain
p0, and (iii) calculate solutions such as the viscous decay factors using p0 which is a
function of the roots xk, k = 1, 2, . . . , N .

The crucial step in the procedure involves solving (2.40) to obtain an analytical
expression for the N real roots, xk, k = 1, 2, . . . , N . When 3 � N � 4, an analytical
expression for the N roots is already too lengthy to be practically useful. Kudlick
(1966) therefore restricted his analysis to N � 2. When N > 4, the procedure
cannot be used because the analytical expression for the roots does not exist. In
general, coefficients for the double polynomial, (Dk, Ak, Bk, k = 1, 2, . . . , N), must be
computed numerically to find a numerical solution of the Poincaré equation. In short,
Kudlick’s procedure (1966) (see also § 2.12, Greenspan 1968) cannot be used to find
the general explicit analytical solution (0 � N < ∞).
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2.5. Symmetries of a spheroidal inertial mode

Solutions of (2.26)–(2.29) in a rotating spheroid have two different spatial symmetries
with respect to a meridional plane. An axisymmetric solution is characterized by the
symmetry property

(uη, uφ, uτ , p)(η, τ, φ) = (uη, uφ, uτ , p)(η, τ, φ + φa), (2.41)

where φa is an arbitrary constant, while a non-axisymmetric solution satisfies

(uη, uφ, uτ , p)(η, τ, φ) = (uη, uφ, uτ , p)(η, τ, φ + 2π/m). (2.42)

In general, an axisymmetric solution in a rotating spheroid represents oscillatory
fluid motions which are usually referred to as inertial oscillations while a non-
axisymmetric solution represents azimuthally travelling waves which are referred to
as inertial waves (Greenspan 1968). There are important physical and mathematical
differences between the oscillation (m = 0) and wave (m � 1) solutions. Generally
speaking, we cannot obtain an oscillation mode (m = 0) from a wave mode (m � 1)
simply by letting m = 0. For a clearer discussion, we shall present the solutions of
axisymmetric oscillations and inertial waves separately.

There also exist two different parities of the solutions with respect to the
equatorial plane, τ = 0, of a rotating spheroid. An equatorially symmetric solution is
characterized by the symmetry property

(uη, uφ, uτ , p)(η, τ, φ) = (uη, uφ, −uτ , p)(η, −τ, φ), (2.43)

while an equatorially antisymmetric wave satisfies

(uη, uφ, uτ , p)(η, τ, φ) = (−uη, −uφ, uτ , −p)(η, −τ, φ). (2.44)

The mathematical analyses for both the equatorial parities are nearly identical except
for shifting several integer indices. In principle, it is feasible to construct a single
mathematical expression valid for both the parities by introducing some additional
parameters. However, the mathematical expression for our general explicit solution
is already complicated, involving many different indices. For a clearer representation,
we shall write the solutions with different equatorial symmetries separately.

3. Explicit solutions for axisymmetric oscillations
We shall take three steps to derive a general explicit solution for the spheroidal

axisymmetric inertial oscillations. First, modified spheroidal coordinates (2.36)–(2.37)
are used to obtain an implicit oscillation solution of (2.34), denoted by p̄0, as a
function of X and Y. In the second step, several explicit solutions for p̄0 as a function
of η and τ are derived, which offer an essential clue and pattern leading to the
general explicit solution for p̄0. Finally, we derive the general explicit solution of
the three velocity components for all the axisymmetric oscillation modes by solving
(2.26)–(2.29) for a given p̄0.

Equations (2.34)–(2.35) suggest that the equatorially symmetric implicit solution for
p̄0 can be written as

p̄0 =

N∑
i=0

N∑
j=0

[
(−1)i+j

i!j!

]
[X2N−2jY 2N−2i]

[
[2(2N − i)]![2(2N − j )]!

(2N − i)!(2N − j )![2(N − i)]![2(N − j )]!

]
,

(3.1)
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where N � 2, n! = n(n − 1)(n − 2) · · · 1 and 0! = 1. An arbitrary normalization is
used in (3.1). Similarly, the equatorially antisymmetric implicit solution for p̄0 is

p̄0 = (τη)

N∑
i=0

N∑
j=0

[
(−1)i+j

i!j!

]
[X2N−2jY 2N−2i]

×
[

[2(2N − i + 1)]![2(2N − j + 1)]!

(2N − i + 1)!(2N − j + 1)![2(N − i) + 1]![2(N − j ) + 1]!

]
, (3.2)

where N � 1. The implicit solution for p̄0 given by (3.1)–(3.2) is not practically useful,
both mathematically and computationally, because of the complicated relationship
given by (2.36)–(2.37). In order to study the effect of viscosity on inertial oscillations,
it is necessary to find the solution that is expressed explicitly in terms of spheroidal
coordinates η and τ . In other words, we require a general explicit analytical solution
for the Poincaré equation (2.33).

The explicit solution for axisymmetric inertial oscillations can be divided into the
following ten classes according to its equatorial symmetries and spatial complexities:

(i) Class Ā1: symmetries (2.41) and (2.44) with N = 1;
(ii) Class S̄2: symmetries (2.41) and (2.43) with N = 2;
(iii) Class Ā2: symmetries (2.41) and (2.44) with N = 2;
(iv) Class S̄3: symmetries (2.41) and (2.43) with N = 3;
(v) Class Ā3: symmetries (2.41) and (2.44) with N = 3;
(vi) Class S̄4: symmetries (2.41) and (2.43) with N = 4;
(vii) Class Ā4: symmetries (2.41) and (2.44) with N = 4;
(viii) Class S̄5: symmetries (2.41) and (2.43) with N = 5;
(ix) Class ĀG: a general solution with symmetries (2.41) and (2.44), N � 5;
(x) Class S̄G: a general solution with symmetries (2.41) and (2.43), N � 6.

For classes (i)–(viii), analytical solutions in closed form can be obtained; for classes
(ix)–(x), exact values for the frequencies of axisymmetric oscillation modes cannot be
found.

3.1. Class Ā1

The simplest mode for equatorially antisymmetric inertial oscillation, class A1, offers
an ideal example to illustrate the solution procedure of our analysis. A particular
advantage is that the solution is sufficiently simple to allow us to write out all the
relevant mathematical expressions in detail. The pressure p̄0 for class Ā1 can be
obtained by letting N = 1 in (3.2) and using the transformation laws (2.36)–(2.37),
which yields

p̄0 = 3
2
ητ − 3u2v2ητ − 1

2(1 − ε2)
(ητ )3, (3.3)

where p̄0 is normalized such that it is consistent with the general solution for N > 5.
With the availability of an explicit expression for p0 in terms of η and τ , we then
derive the three velocity components of the axisymmetric oscillation in spheroidal
polar coordinates by using (2.26)–(2.29)

Vη =
3u

4w

[
5σv2τη2

1 − ε2σ 2
+

τ

σ
− 5(1 − σ 2)u2v2τ

2σ (1 − ε2σ 2)
− 5στ 3η2

1 − ε2σ 2

]
, (3.4)

Vφ = − 15

4(1 − ε2σ 2)
(uvητ ), (3.5)
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ε 2σ Re[G] Im[G]

0.1 0.898027 −3.2550 0.2916√
3/2 1.414214 (1.414) −4.2051 (−4.205) 1.5838 (0.1584)
0.9 1.507557 −4.3625 1.9044

Table 1. Class Ā1 examples.

Vτ =
3v

4w

[
− 5σu2τ 2η

1 − ε2σ 2
+

η

σ
− 5(1 − σ 2)u2v2η

2σ (1 − ε2σ 2)
− 5στ 2η3

1 − ε2σ 2

]
. (3.6)

To determine the half-frequency σ of the oscillation, we demand the vanishing of
the normal velocity Vη, given by (3.4), at the envelope of the spheroidal cavity

η =
√

1 − ε2. This results in an equation for σ as a function of ε

σ = ±
(

1

5 − 4ε2

)1/2

. (3.7)

It follows that, for a given ε, there exist two axisymmetric oscillation modes in
this class. Several examples for the positive half-frequency σ , together with the
corresponding viscous corrections (see § 6 for detail; the numbers in parentheses were
given by Kudlick 1966) are shown in table 1. It is worth noting that both ±|σ | are
the solution of axisymmetric oscillations and they are related by

(Vη, Vφ, Vτ , p̄0)(σ ) = (−Vη, Vφ, −Vτ , p̄0)(−σ ). (3.8)

As a result, we shall only focus on the solutions with σ > 0. Inserting (3.7) into
(3.4)–(3.6), we obtain the three velocity components of the oscillation for this class in
closed form

Vη =
3u

√
5 − 4ε2

4w

[
v2τη2

1 − ε2
+ τ − 2u2v2τ − τ 3η2

1 − ε2

]
, (3.9)

Vφ = −3(5 − 4ε2)

4(1 − ε2)
(uvητ ), (3.10)

Vτ =
3v

√
5 − 4ε2

4w

[
− u2τ 2η

1 − ε2
+ η − 2u2v2η − τ 2η3

1 − ε2

]
. (3.11)

It should be pointed out that we have been unable to find such an explicit solution,
though it represents the simplest one in our analysis, in the existing literature.

3.2. Class S̄2

The simplest equatorially symmetric solution for axisymmetric oscillation can be
obtained by letting N = 2 in (3.1) together with the transformation laws (2.36)–(2.37),
which leads to

p̄0 = 3
4

−
[

15(1 − σ 2)

4(1 − ε2σ 2)

]
(uv)2 +

[
105(1 − σ 2)2

32(1 − ε2σ 2)2

]
(uv)4 −

[
15σ 2

2(1 − ε2σ 2)

]
(ητ )2

+

[
105σ 2(1 − σ 2)

4(1 − ε2σ 2)2

]
(uvητ )2 +

[
35σ 4

4(1 − ε2σ 2)2

]
(ητ )4. (3.12)
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ε 2σ Re[G] Im[G]

0.1 1.313064 −3.3903 0.4336√
3/2 1.732051 (1.732) −3.8448 (−3.844) 1.3845 (1.384)
0.9 1.786474 −3.8975 1.5352

Table 2. Class S̄2 examples.

By the same procedure as described for class Ā1, we can derive the three velocity
components of the oscillation, which is too lengthy to be spelled out and is contained
in the general solution (3.24)–(3.26) by setting N = 2. The normal flow condition

Vη = 0 at η =
√

1 − ε2 gives

σ = ±
(

3

7 − 4ε2

)1/2

. (3.13)

There exist two axisymmetric oscillation modes for a given ε. Several examples for 2σ

together with the corresponding viscous corrections (see § 6) for class S̄2 are given in
table 2 for three different eccentricities. On substitution of (3.13) into expressions for
the velocity (Vη, Vφ, Vτ ) given by (3.24)–(3.26) at N = 2, and for the pressure p0 given
by (3.12), we obtain the fully explicit oscillation solution in closed form for class S̄2.

3.3. Class Ā2

When N = 2 with equatorial antisymmetry (2.44), class Ā2, the axisymmetric
oscillation solution in closed form can still be derived. Equation (3.2) at N =2
with the transformation laws (2.36)–(2.37) gives

p̄0 = 3
4
(ητ ) − 105(1 − σ 2)

4(1 − ε2σ 2)
(u2v2ητ ) +

945(1 − σ 2)2

32(1 − ε2σ 2)2
(u4v4ητ )

− 35σ 2

2(1 − ε2σ 2)
(η3τ 3) +

315σ 2(1 − σ 2)

4(1 − ε2σ 2)2
(u2v2η3τ 3) +

63σ 4

4(1 − ε2σ 2)2
(η5τ 5). (3.14)

From (2.26)–(2.29), we then derive the three velocity components (Vη, Vφ, Vτ ) in
spheroidal polar coordinates, which are again too lengthy to be spelled out here and
can be obtained by letting N = 2 in (3.29)–(3.31). The normal flow condition that

Vη = 0 at η =
√

1 − ε2 yields

σ = ±
[
(7 − 6ε2) ± 2

√
7(1 − ε2)

(21 − 28ε2 + 8ε4)

]1/2

. (3.15)

Several examples of the frequency 2σ and the corresponding viscous corrections for
three different eccentricities are given in table 3.

It follows that there exist four axisymmetric oscillation modes for a given ε in this
class. On substitution of (3.15) into the corresponding expressions for the pressure p̄0

given by (3.14) and the flow velocity given by (3.29)–(3.31) at N = 2, we obtain the
fully explicit inertial wave solutions in closed form for this class.

3.4. Class S̄3

When N = 3 with equatorial symmetry (2.44), class S̄3, oscillation solutions in closed
form can be also derived. By the same method, we can readily obtain an expression
for p̄0 in spheroidal polar coordinates, and then derive the three velocity components
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ε 2σ Re[G] Im[G]

0.1 0.573101 −4.4447 0.1956
0.1 1.533293 −3.4511 0.5123√
3/2 1.022904 −6.2601 1.5075√
3/2 1.843397 (1.843) −3.6989 (−3.698) 1.1951 (1.194)
0.9 1.127699 −6.6513 1.9642
0.9 1.877612 −3.7234 1.2812

Table 3. Class Ā2 examples.

ε 2σ Re[G] Im[G]

0.1 0.941377 −4.6518 0.3255
0.1 1.663034 −3.4828 0.5606√
3/2 1.455827 −5.8825 1.6812√
3/2 1.896010 (1.896) −3.6302 (−3.629) 1.0720 (1.070)
0.9 1.545636 −6.0775 2.0032
0.9 1.919484 −3.6436 1.1285

Table 4. Class S̄3 examples.

(Vη, Vφ, Vτ ) from (2.26)–(2.29), which are again too lengthy to be spelled out here.
They are contained in the general expressions (3.24)–(3.26) by letting N = 3. The

normal flow condition that Vη = 0 at η =
√

1 − ε2 yields

σ = ±
[
5(3 − 2ε2) ±

√
60(1 − ε2)

(33 − 36ε2 + 8ε4)

]1/2

. (3.16)

Several examples of the frequency 2σ and the corresponding viscous corrections for
class S̄3 are shown in table 4 for three different eccentricities.

It follows that there exist four different oscillation modes for a given ε in this class.
On substitution of (3.16) into the corresponding expressions for the pressure p̄0 given
by (3.23) at N = 3 and the flow velocity given by (3.24)–(3.26) at N = 3, we obtain
the fully explicit inertial oscillation solution in closed form for this class.

3.5. Class Ā3

When N = 3 with equatorial antisymmetry (2.43), class Ā3, the explicit solution
becomes more complicated. However, the solution in closed form can still be derived.
By the same method, we can obtain an explicit expression for p̄0(η, τ ) and then
derive the three velocity components (Vη, Vφ, Vτ ) in spheroidal coordinates, which are
contained in the general expressions (3.28)–(3.31) by letting N = 3. The normal flow

condition that Vη = 0 at η =
√

1 − ε2 yields an equation for σ

Λ1σ
6 + (240ε4 − 720ε2 + 495)σ 4 + (120ε2 − 135)σ 2 + 5 = 0, (3.17)

where

Λ1 = 64ε6 − 432ε4 + 792ε2 − 429.
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ε 2σ Re[G] Im[G]

0.1 0.420614 −5.3742 0.1479
0.1 1.187265 −4.7758 0.4147
0.1 1.745577 −3.5011 0.5923√
3/2 0.787075 −7.7669 1.2929√
3/2 1.652913 −5.6259 1.5654√
3/2 1.925413 −3.5937 0.9903
0.9 0.881537 −8.3335 1.7492
0.9 1.719615 −5.7361 1.7744
0.9 1.942551 −3.6018 1.0309

Table 5. Class Ā3 examples.

It follows that there exist six different inertial oscillation solutions for a given ε. The
exact solution for σ is given by

σj = ±
{

−1

3Λ1

(240ε4 − 720ε2 + 495) + 2Γ cos

[
Φ

3
+

2(j − 1)π

3

]}1/2

(j = 1, 2, 3),

(3.18)
where

Γ =

[
f1(ε)

9Λ2
1

]1/2

, Φ = cos−1

{
−1

Γ 3

[
f2(ε)

54Λ3
1

+
5

2Λ1

]}

with f1 and f2 are defined as

f1(ε) = 71 280 − 237 600ε2 + 295 920ε4 − 164 160ε6 + 34 560ε8,

f2(ε) = −15 436 575 + 22 453 200ε2 + 57 736 800ε4 − 167 572 800ε6

+ 160 185 600ε8 − 68 428 800ε10 + 11 059 200ε12.

Examples for the frequency 2σ and the corresponding viscous corrections for class
Ā3 are given in table 5 for three different eccentricities. On substitution of (3.18) into
the corresponding expressions for the pressure p0 given by (3.28) at N = 3 and the
three velocity components given by (3.29)–(3.31) at N = 3, we obtain the fully explicit
oscillation solutions in closed form for this class.

3.6. Class S̄4

When N = 4 with equatorial symmetry (2.43), class S̄4, the form of the explicit
solutions is similar to that for class Ā3. Again, the expression for p̄0 and the three
velocity components (Vη, Vφ, Vτ ) are contained in the general expressions (3.23)–(3.26)

by letting N = 4. The normal flow condition that Vη = 0 at η =
√

1 − ε2 yields an
equation for σ

Λ2σ
6 + (336ε4 − 1232ε2 + 1001)σ 4 + (280ε2 − 385)σ 2 + 35 = 0, (3.19)

where

Λ2 = 64ε6 − 528ε4 + 1144ε2 − 715.
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ε 2σ Re[G] Im[G]

0.1 0.729408 −5.6021 0.2590
0.1 1.358054 −4.8554 0.4781
0.1 1.801232 −3.5124 0.6144√
3/2 1.229511 −7.4931 1.7027√
3/2 1.757391 −5.4663 1.4298√
3/2 1.943665 −3.5728 0.9336
0.9 1.333042 −7.8486 2.1337
0.9 1.807517 −5.5359 1.5738
0.9 1.956750 −3.5779 0.9644

Table 6. Class S̄4 examples.

It follows that there are six axisymmetric oscillation modes for a given ε. The exact
values of the half oscillation frequency are given by

σj = ±
{

−1

3Λ2

(336ε4 − 1232ε2 + 1001) + 2Γ cos
[

1
3
Φ + 2

3
(j − 1)π

]}1/2

(j = 1, 2, 3),

(3.20)
where

Γ =

[
f3(ε)

9Λ2
2

]1/2

, Φ = cos−1

{
1

Γ 3

[
f4(ε)

54Λ3
2

− 35

2Λ2

]}
with f3 and f4 are defined as

f3(ε) = 176 176 − 544 544ε2 + 619 696ε4 − 310 464ε6 + 59 136ε8,

f4(ε) = 473 946 473 − 1 416 983 568ε2 + 1 516 875 360ε4 − 584 534 720ε6

− 80 720 640ε8 + 114 250 752ε10 − 21 676 032ε12.

Examples for the frequency 2σ and the corresponding viscous corrections for class
S̄4 are shown in table 6 for three different eccentricities. On substitution of (3.20)
into the corresponding expressions for the pressure p̄0 given by (3.28) at N = 4 and
the velocity components given by (3.29)–(3.31) at N = 4, we obtain the fully explicit
inertial oscillation solution in closed form for this class.

3.7. Class Ā4

Class Ā4 represents the most complicated explicit solution with symmetry (2.43)
which can be written in closed form. By the same method, we can obtain an
explicit expression for p̄0 which is then used to derive the three velocity components
(Vη, Vφ, Vτ ) in spheroidal coordinates. The normal flow condition that Vη = 0 at

η =
√

1 − ε2 yields an equation for σ

Ca
8σ

8 + Ca
6σ

6 + (2002 − 3080ε2 + 1120ε4)σ 4 + (−308 + 280ε2)σ 2 + 7 = 0, (3.21)

where

Ca
8 = 2431 − 5720ε2 + 4576ε4 − 1408ε6 + 128ε8,

Ca
6 = −4004 + 8008ε2 − 4928ε4 + 896ε6.

It follows that there exist eight axisymmetric oscillation solutions for a given ε, and
the analytical expression for σ is too lengthy to be spelled out here. Several examples
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ε 2σ Re[G] Im[G]

0.1 0.332177 −6.1703 0.1193
0.1 0.959559 −5.7577 0.3434
0.1 1.480915 −4.9092 0.5249
0.1 1.840490 −3.5197 0.6304√
3/2 0.635585 −8.9976 1.1040√
3/2 1.472615 −7.2211 1.7295√
3/2 1.819645 −5.3638 1.3168√
3/2 1.955839 −3.5600 0.8927
0.9 0.717711 −9.6952 1.5231
0.9 1.560867 −7.4489 2.0526
0.9 1.858459 −5.4115 1.4222
0.9 1.966170 −3.5634 0.9170

Table 7. Class Ā4 examples.

for the frequency 2σ and the corresponding viscous corrections for class Ā4 are
shown in table 7. On substitution of the analytical expression for σ into the pressure
p̄0 given by (3.28) at N = 4 and the three velocity components given in (3.29)–(3.31)
at N = 4, we obtain the fully explicit oscillation solutions in closed form for this
class.

3.8. Class S̄5

Class S̄5 represents the spatially most complicated explicit solution with symmetry
(2.44) that can still be written in closed form. By the same method, we can obtain
an expression for p̄0 and then derive the three velocity components (Vη, Vφ, Vτ ) in
spheroidal polar coordinates. They are contained in the general expressions (3.23)–
(3.26) by letting N = 5. The half-frequency σ is determined by the vanishing normal

flow on the wall of the spheroidal cavity, Vη = 0 at η =
√

1 − ε2, which gives

Cs
8σ

8 + Cs
6σ

6 + (4914 − 6552ε2 + 2016ε4)σ 4 + (−1092 + 840ε2)σ 2 + 63 = 0, (3.22)

where

Cs
8 = 4199 − 8840ε2 + 6240ε4 − 1664ε6 + 128ε8,

Cs
6 = −7956 + 14040ε2 − 7488ε4 + 1152ε6.

It follows that there exist eight oscillation solutions for a given ε. The analytical
expression for σ is too lengthy to be shown explicitly. Several examples for the
frequency 2σ and the corresponding viscous correction for class S̄5 are shown in
table 8. On substitution of the expression for σ into the corresponding equations for
the pressure p̄0 given (3.23) at N = 5 and the flow velocity given in (3.24)–(3.26) at
N = 5, we obtain the fully explicit oscillation solution in closed form for this class.

3.9. General explicit solutions: classes S̄G and ĀG

It should be noted that the detailed derivation for the axisymmetric oscillation
solutions at different small values of N indicates an essential characteristic for the
general explicit solution in spheroidal coordinates valid for any N . On the basis of
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ε 2σ Re[G] Im[G]

0.1 0.594234 −6.4021 0.2149
0.1 1.134337 −5.8683 0.4087
0.1 1.571993 −4.9470 0.5603
0.1 1.869196 −3.5248 0.6424√
3/2 1.052919 −8.8275 1.6172√
3/2 1.615588 −7.0139 1.6485√
3/2 1.859978 −5.2953 1.2276√
3/2 1.964395 −3.5518 0.8622
0.9 1.158161 −9.3311 2.0974
0.9 1.687481 −7.1690 1.8872
0.9 1.890890 −5.3298 1.3085
0.9 1.972766 −3.5541 0.8819

Table 8. Class S̄5 examples.

observation, for example,

X2Y 2 =
(ητ )2σ 2

(1 − ε2σ 2)
,

X2 + Y 2 = 1 − (1 − σ 2)u2v2

(1 − ε2σ 2
+

(ητ )2σ 2

(1 − ε2σ 2
,

X4 + Y 4 = 1 +
(uv)4(1 − σ 2)2

(1 − ε2σ 2)2
+

(ητ )4σ 4

(1 − ε2σ 2)2
− 2(uv)2(1 − σ 2)

(1 − ε2σ 2)
− 2(uvτη)2(1 − σ 2)σ 2

(1 − ε2σ 2)2
,

and the pattern suggested, for example, by expression (3.14), we are able to obtain
the general expression for p̄0 using explicit spheroidal coordinates in the form

p̄0 =

N∑
i=0

N−i∑
j=0

C̄s
ijNσ 2i(1 − σ 2)j (uv)2j (ητ )2i (3.23)

for equatorially symmetric oscillations, where C̄s
ijN is defined by

C̄s
ijN =

[
−1

(1 − σ 2ε2)

]i+j
[2(N + i + j ) − 1]!!

2j+1(2i − 1)!!(N − i − j )!i!(j!)2
,

where N = 2, 3, 4, . . . , (2n−1)!! = (2n−1)(2n−3) . . . 1 and (−1)!! = 1. The pressure
p̄0 represents a general explicit solution for the Poincaré equation given by (2.33).
The validity of the general explicit solution can be verified by a direct substitution of
(3.23) into (2.33). From (2.26)–(2.29), we can then derive the three velocity components,
(Vη, Vφ, Vτ ), in explicit spheroidal coordinates valid for all possible N � 2

Vη = − 1

w

[
N−1∑
i=0

N−i∑
j=1

jC̄s
ijNσ 2i+1(1 − σ 2)j−1u2j−1v2jη2i+1τ 2i

]

+
1

w

[
N∑

i=1

N−i∑
j=0

iC̄s
ijNσ 2i−1(1 − σ 2)ju2j+1v2jη2i−1τ 2i

]
, (3.24)
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ε 2σ Re[G] Im[G]

0.1 0.500928 −7.1093 0.1837
0.1 0.969544 −6.7026 0.3548
0.1 1.376022 −6.0106 0.5011
0.1 1.695101 −4.9953 0.6094
0.1 1.907490 −3.5308 0.6589√
3/2 0.915457 −9.9750 1.5002√
3/2 1.481672 −8.3691 1.7602√
3/2 1.767112 −6.7512 1.4556√
3/2 1.907781 −5.2134 1.1018√
3/2 1.975374 −3.5429 0.8200
0.9 1.016997 −10.6076 1.9921
0.9 1.569052 −8.6260 2.0844
0.9 1.815542 −6.8351 1.5974
0.9 1.928747 −5.2335 1.1546
0.9 1.981201 −3.5440 0.8340

Table 9. Class S̄6 examples.

Vφ =

N−1∑
i=0

N−i∑
j=1

jC̄s
ijNσ 2i(1 − σ 2)j−1(uv)2j−1(ητ )2i , (3.25)

Vτ =
1

w

[
N−1∑
i=0

N−i∑
j=1

jC̄s
ijNσ 2i+1(1 − σ 2)j−1u2j v2j−1η2iτ 2i+1

]

+
1

w

[
N∑

i=1

N−i∑
j=0

iC̄s
ijNσ 2i−1(1 − σ 2)ju2j v2j+1η2iτ 2i−1

]
. (3.26)

Note that there are no oscillation solutions when N � 1 for this equatorial symmetry.
The value of half-frequency σ is solutions of the equation resulting from the normal

flow condition Vη = 0 at η =
√

(1 − ε2),

0 =

N−1∑
j=0

(−1)j
[2(2N − j )]!

j!(2N − j )![2(N − j ) − 1]!
[(1 − ε2)σ 2](N−j−1)(1 − σ 2ε2)j . (3.27)

For a given ε and N , there exist 2(N − 1) different solutions for σ corresponding to
2(N − 1) axisymmetric oscillation modes. Evidently, exact solutions of (3.27) for σ in
closed form exist only when N � 5; the solutions of (3.27) for N � 6 can be readily
computed numerically. Several examples of positive σ for N = 6, together with their
viscous corrections, are presented in table 9. For equatorially symmetric modes at
N = 6, there exist 10 axisymmetric oscillation modes for a given ε; only the positive
values of σ are shown.

By the same procedure, we can also obtain the general explicit solution for
equatorially antisymmetric oscillations using spheroidal polar coordinates

p̄0 =

N∑
i=0

N−i∑
j=0

C̄a
ijNσ 2i(1 − σ 2)j (uv)2j (ητ )2i+1, (3.28)
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where C̄a
ijN is defined by

C̄a
ijN =

[
−1

(1 − σ 2ε2)

]i+j
[2(N + i + j ) + 1]!!

2j+1(2i + 1)!!(N − i − j )!i!(j!)2

for N = 1, 2, 3, . . . . There are no oscillation solutions for this symmetry when N = 0.
The three components of the velocity in spheroidal polar coordinates are then derived
from (2.26)–(2.29)

Vη = − 1

w

[
N−1∑
i=0

N−i∑
j=1

jC̄a
ijNσ 2i+1(1 − σ 2)j−1u2j−1v2jη2i+2τ 2i+1

]

+
1

2w

[
N∑

i=0

N−i∑
j=0

(2i + 1)C̄a
ijNσ 2i−1(1 − σ 2)ju2j+1v2jη2iτ 2i+1

]
, (3.29)

Vφ =

N−1∑
i=0

N−i∑
j=1

C̄a
ijNjσ 2i(1 − σ 2)j−1(uv)2j−1(ητ )2i+1, (3.30)

Vτ =
1

w

[
N−1∑
i=0

N−i∑
j=1

jC̄a
ijNσ 2i+1(1 − σ 2)j−1u2j v2j−1η2i+1τ 2i+2

]

+
1

2w

[
N∑

i=0

N−i∑
j=0

(2i + 1)C̄a
ijNσ 2i−1(1 − σ 2)ju2j v2j+1η2i+1τ 2i

]
. (3.31)

The half-frequency σ of the equatorially antisymmetric inertial oscillation is solutions
of the following equation

0 =

N∑
j=0

(−1)j
[2(2N − j + 1)]!

j!(2N − j + 1)![2(N − j )]!
[(1 − ε2)σ 2](N−j )(1 − σ 2ε2)j . (3.32)

Examples for the frequency 2σ and the corresponding viscous correction for
equatorially antisymmetric modes at N = 5, class Ā5, are shown in table 10 for
three different eccentricities.

For any given ε and N � 1, there exist 2N solutions for σ giving 2N axisymmetric
oscillation modes. Exact values for σ in closed form exist only when N � 4. However,
solutions of (3.32) when N � 5 have to be computed numerically.

For the first time, we have found a possibly complete set of the axisymmetric
oscillation modes in a spheroid of arbitrary eccentricity in explicit spheroidal
coordinates, which are

2 modes in class Ā1; 2 modes in class S̄2;
4 modes in class Ā2; 4 modes in class S̄3;
6 modes in class Ā3; 6 modes in class S̄4;
8 modes in class Ā4; 8 modes in class S̄5;
2N modes in class ĀG for each N = 5, 6, 7, . . . ;
2(N − 1) modes in class SG for each N = 6, 7, 8, . . . .

On the basis of the explicit solution, (Vη, Vφ, Vτ ) in spheroidal coordinates, we
can provide a rigorous mathematical proof for the property (1.9) (Appendix A).
Moreover, we may expand an arbitrary axisymmetric function in a spheroid of
arbitrary eccentricity in terms of the axisymmetric eigenfunctions. It is also the
explicit solution in spheroidal coordinates that allows us to proceed readily with the
higher-order analysis (the effect of viscosity ), which is discussed in § 5 and § 6.



Inertial waves and oscillations in a rotating spheroid 21

ε 2σ Re[G] Im[G]

0.1 0.274456 −6.8799 0.1001
0.1 0.802441 −6.5731 0.2921
0.1 1.269563 −5.9494 0.4601
0.1 1.641259 −4.9746 0.5877
0.1 1.890812 −3.5283 0.6516√
3/2 0.531547 −10.0636 0.9549√
3/2 1.314149 −8.5867 1.7665√
3/2 1.706121 −6.8625 1.5488√
3/2 1.887753 −5.2476 1.1575√
3/2 1.970652 −3.5465 0.8386
0.9 0.603037 −10.8648 1.3322
0.9 1.414111 −8.9417 2.1744
0.9 1.764758 −6.9741 1.7299
0.9 1.912963 −5.2735 1.2220
0.9 1.977577 −3.5481 0.8550

Table 10. Class Ā5 examples.

4. Explicit solutions for inertial waves
When m � 1, the leading-order mainstream problem describes non-dissipative

azimuthally travelling waves in a rotating spheroidal cavity. As in the problem of
inertial oscillation, we shall take three similar steps to derive a general explicit
analytical solution for the pressure p0 and for the three velocity components of the
waves. From (2.34)–(2.38), it can be shown that the equatorially symmetric implicit
solution for p0 can be written as

p0 = (uv)m
N∑

i=0

N∑
j=0

[
(−1)i+j

i!j!

]
[X2N−2jY 2N−2i]

×
[

[2(2N + m − i)]![2(2N + m − j )]!

(2N + m − i)!(2N + m − j )!(2N − 2i)!(2N − 2j )!

]
, (4.1)

where N = 1, 2, 3, . . . , m = 1, 2, 3, . . . . An arbitrary normalization is used in (4.1). By
a similar analysis, we can also derive the equatorially antisymmetric implicit solution
for p0

p0 = τη(uv)m
N∑

i=0

N∑
j=0

[
(−1)i+j

i!j!

]
[X2N−2jY 2N−2i]

×
[

[2(2N + m − i + 1)]![2(2N + m − j + 1)]!

(2N + m − i + 1)!(2N + m − j + 1)!(2N − 2i + 1)!(2N − 2j + 1)!

]
, (4.2)

where N = 0, 1, 2, 3, . . . and m = 1, 2, 3, . . . .

The explicit inertial wave solution in spheroidal coordinates η and τ can be
divided into the following six classes according to its equatorial symmetry and spatial
structure:

(i) Class A0: symmetry (2.44) with N = 0, m = 1, 2, 3, . . . ;
(ii) Class S1: symmetry (2.43) with N = 1, m = 1, 2, 3, . . . ;
(iii) Class A1: symmetry (2.44) with N = 1, m = 1, 2, 3, . . . ;
(iv) Class S2: symmetry (2.43) with N = 2, m = 1, 2, 3, . . . ;
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m, ε 2σ Re[G] Im[G]

1, 0.1 1.005025 −2.6247 0.2662
2, 0.1 0.671141 −3.5260 0.1829

1,
√

3/2 1.600000 −3.0319 1.4284

2,
√

3/2 1.333333 −4.4782 1.7253
1, 0.9 1.680672 −3.0752 1.6190
2, 0.9 1.449275 −4.6120 2.0787

Table 11. Class A0 examples.

(v) Class AG: general explicit solution with symmetry (2.44), N � 2, m =
1, 2, 3, . . . ;

(vi) Class SG: general explicit solution with symmetry (2.43), N � 3, m =
1, 2, 3, . . . .

For classes (i)–(iv), analytical solutions for the inertial waves in closed form can be
obtained; for classes (v)–(vi), exact solutions for the frequency of inertial waves in
closed form cannot be obtained.

4.1. Class A0

The simplest equatorially antisymmetric inertial wave, class A0, is an ideal example
for illustration because the solution is simple enough to write out all the mathematical
details. The pressure p0 for class A0 can be obtained by letting N = 0 in (4.2) and
using the transformation laws (2.36)–(2.37), which yields

p0 =
(2m + 1)!!

2m!
umvmητ, (4.3)

where p0 is normalized such that it is consistent with the general solution. With the
availability of an explicit expression for p0 in terms of η and τ , we then derive the
velocity of the inertial wave in spheroidal polar coordinates by using (2.26)–(2.29)

Vη =
(2m + 1)!!

4m!

τ (uv)m

w

[
−η2m

u(1 − σ )
+

u

σ

]
, (4.4)

Vφ =
(2m + 1)!!

4m!

mητ

(1 − σ )
(uv)(m−1), (4.5)

Vτ =
(2m + 1)!!

4m!

η(uv)m

w

[
τ 2m

v(1 − σ )
+

v

σ

]
. (4.6)

To determine the half-frequency σ of the inertial wave, we demand the vanishing
of the normal velocity Vη, given by (4.4), at the envelope of the spheroidal cavity

η =
√

1 − ε2. This results in

σ =
1

1 + m(1 − ε2)
. (4.7)

Several examples for the half frequency σ and the corresponding viscous corrections
for equatorially symmetric waves, A0, are shown in table 11 for three different
eccentricities.

It follows that there exists one inertial wave solution for each m > 0. Inserting
expression (4.7) into (4.4)–(4.6), we obtain the three velocity components of the
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inertial wave of this class in closed form

Vη =
(2m + 1)!![1 + m(1 − ε2)]

4m!

τ (uv)m

w

[
−η2

u(1 − ε2)
+ u

]
, (4.8)

Vφ =
(2m + 1)!![1 + m(1 − ε2)]

4m!
ητ (uv)(m−1) 1

(1 − ε2)
, (4.9)

Vτ =
(2m + 1)!![1 + m(1 − ε2)]

4m!

η(uv)m

w

[
τ 2

v(1 − ε2)
+ v

]
. (4.10)

The simplest solution in this class is the spin-over mode which is obtained by setting
m = 1 in (4.8)–(4.10). It is characterized by the vanishing of the radial flow in the
spherical limit

Vη(η, τ ) → 0 as ε → 0, (4.11)

i.e. the wave motion is purely toroidal.

4.2. Class S1

The simplest equatorially symmetric solution can be obtained by letting N = 1 in
(4.1) together with the transformation laws (2.36)–(2.37), which leads to

p0 =

[
(2m + 1)!!

2m!

]
(uv)m −

[
(2m + 3)!!(1 − σ 2)

22(m + 1)!(1 − ε2σ 2)

]
(uv)(m+2)

−
[

(2m + 3)!!σ 2

2m!(1 − ε2σ 2)

]
(uv)m(ητ )2. (4.12)

By the same procedure as described in class A0, we can derive the velocity of the
inertial wave, which is too lengthy to be spelled out here. It is contained in the
general solution (4.21)–(4.23) by setting N = 1. The normal flow condition Vη = 0 at

η =
√

1 − ε2 gives rise to an equation for σ

[(2m + 3)(m + 2) − 2m(m + 1)ε2]σ 2 − 2(2m + 3)σ − m = 0. (4.13)

For each non-zero wavenumber m, there exist two inertial wave solutions

σ =
(2m + 3)

(m + 2)(2m + 3) − 2m(m + 1)ε2

{
1 ±

[
(m + 2)2 − 1

(2m + 3)
− 2m2(m + 1)ε2

(2m + 3)2

]1/2
}

.

(4.14)

One (σ < 0) propagates eastward while another (σ > 0) propagates westward. Several
examples for the frequency 2σ and the corresponding viscous corrections are shown
in table 12. Class S1 has the simplest spatial structure for equatorially symmetric
inertial waves. In particular, the corresponding fluid motion is largely trapped in
the equatorial region with small variation along the direction of rotation axis.
In the spherical limit ε = 0, these two waves represent the leading-order thermal
convection solution for an incompressible viscous fluid with small Prandtl numbers
(Zhang 1995).

On substitution of (4.14) into expressions for the velocity (Vη, Vφ, Vτ ) given by
(4.21)–(4.23 ) at N = 1 and for the pressure p0 (4.12), we obtain the fully explicit
solution in closed form for Class S1.
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m, ε 2σ Re[G] Im[G]

2, 0.1 −0.232083 −4.1930 −0.1547
2, 0.1 +1.236387 −3.5672 +0.4119
4, 0.1 −0.261604 −5.4230 −0.2255
4, 0.1 +0.932335 −5.0125 +0.4047

2,
√

3/2 −0.244987 −6.4832 −0.3594

2,
√

3/2 +1.718671 (1.719) −3.9365 (−3.936) +1.4412 (1.441)

4,
√

3/2 −0.293268 −8.2014 −0.5177

4,
√

3/2 +1.515490 −5.9819 +1.9052
2, 0.9 −0.246156 −7.1337 −0.4280
2, 0.9 +1.777885 −3.9727 +1.5898
4, 0.9 −0.296502 −8.9753 −0.6120
4, 0.9 +1.606026 −6.1022 +2.2021

Table 12. Class S1 examples.

4.3. Class A1

When N = 1 with equatorial antisymmetry, class A1, the inertial wave solutions
in closed form can still be derived. Equation (4.2) at N = 1 together with the
transformation laws gives

p0 =

[
(2m + 3)!!

2m!

]
(ητ )(uv)m −

[
(2m + 5)!!(1 − σ 2)

22(m + 1)!(1 − ε2σ 2)

]
(ητ )(uv)(m+2)

−
[

(2m + 5)!!σ 2

6(m)!(1 − ε2σ 2)

]
(uv)m(ητ )3. (4.15)

From (2.26)–(2.29) we then derive the three velocity components (Vη, Vφ, Vτ ) in
spheroidal polar coordinates, which are again too lengthy to be spelled out here and
can be obtained by letting N = 1 in (4.26)–(4.28). The normal flow condition that

Vη = 0 at η =
√

1 − ε2 yields

1
3
A3σ

3 − [(2m + 5) − 2(m + 2)ε2]σ 2 − [(m + 1) − mε2]σ + 1 = 0, (4.16)

where

A3 = (2m + 5)(m + 3) − (4m2 + 13m + 12)ε2 + 2m(m + 1)ε4.

It follows that there exist three different inertial waves for each non-zero wavenumber
m, which are given by

σj =
(2m + 5) − 2(m + 2)ε2

A3

+ 2Γ cos

[
Φ

3
+

2(j − 1)Π

3

]
(j = 1, 2, 3), (4.17)

where

Γ =
1

A3

[
3∑

j=0

βjε
2j

]1/2

, Φ = cos−1

[
− 1

A3Γ 3

(
1

54A2
3

4∑
j=0

γjε
2j +

3

2

)]
,

with

β0 = (2m + 5)(m2 + 6m + 8),

β1 = −(6m3 + 36m2 + 76m + 52),

β2 = 6m3 + 21m2 + 30m + 16,
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m, ε 2σ Re[G] Im[G]

2, 0.1 −0.766046 −4.4810 −0.3533
2, 0.1 +0.469758 −4.5766 +0.1398
2, 0.1 +1.500033 −3.5708 +0.5103
4, 0.1 −0.683086 −5.6274 −0.4141
4, 0.1 +0.319757 −5.7140 +0.0960
4, 0.1 +1.224637 −5.0012 +0.5356

2,
√

3/2 −1.203244 −6.1331 −1.7423

2,
√

3/2 +0.963948 −6.4350 +1.5252

2,
√

3/2 +1.839296 (1.839) −3.7452 (−3.744) +1.2204 (1.219)

4,
√

3/2 −1.078667 −7.8237 −1.8470

4,
√

3/2 +0.746161 −8.1860 +1.4066

4,
√

3/2 +1.703935 −5.5879 +1.6896
2, 0.9 −1.298689 −6.4685 −2.1864
2, 0.9 +1.079099 −6.8285 +2.0089
2, 0.9 +1.875089 −3.7601 +1.3037
4, 0.9 −1.170572 −8.3037 −2.3497
4, 0.9 +0.856347 −8.7518 +1.9300
4, 0.9 +1.765125 −5.6490 +1.8660

Table 13. Class A1 examples.

β3 = −2m2(m + 1),

γ0 = −27(2m + 5)2(3m2 + 16m + 19),

γ1 = 81(2m + 5)(8m3 + 48m2 + 98m + 64),

γ2 = −(1944m4 + 12 960m3 + 33 129m2 + 38 718m + 16 848),

γ3 = (1296m4 + 6264m3 + 11 178m2 + 9720m + 3456),

γ4 = −324m2(m + 1)(m + 2).

Several examples for the frequency 2σ together with the corresponding viscous
corrections for this class, A1, are shown in table 13. For each non-zero wavenumber
m and a given ε, there exist three inertial wave solutions. One (σ < 0) propagates
eastward while other two (σ > 0) propagate westward. On substitution of (4.17) into
the corresponding expressions for the pressure p0 in (4.15) and the flow velocity given
by (4.26)–(4.28) at N = 1, we obtain the fully explicit inertial wave solution in closed
form for this class.

4.4. Class S2

The most complicated class for equatorial symmetric waves that can be written in
closed form is N = 2 , class S2. By a similar procedure, we can derive the pressure
p0 in spheroidal polar coordinates

p0 =

[
(2m + 3)!!

4m!

]
(uv)m −

[
(2m + 5)!!(1 − σ 2)

4(m + 1)!(1 − σ 2ε2)

]
(uv)(m+2)

−
[

(2m + 5)!!σ 2

2m!(1 − σ 2ε2)

]
(uv)m(ητ )2 +

[
(2m + 7)!!σ 2(1 − σ 2)

4(m + 1)!(1 − σ 2ε2)2

]
(uv)(m+2)(ητ )2

+

[
(2m + 7)!!(1 − σ 2)2

16(m + 2)!(1 − σ 2ε2)2

]
(uv)(m+4) +

[
(2m + 7)!!σ 4

24m!(1 − σ 2ε2)2

]
(uv)m(ητ )4. (4.18)
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m, ε 2σ Re[G] Im[G]

2, 0.1 −1.096086 −4.6308 −0.4773
2, 0.1 −0.101823 −5.1092 −0.0677
2, 0.1 +0.888212 −4.7582 +0.3019
2, 0.1 +1.646272 −3.5685 +0.5640
4, 0.1 −0.968473 −5.7474 −0.5354
4, 0.1 −0.131315 −6.1158 −0.1019
4, 0.1 +0.695534 −5.8680 +0.2690
4, 0.1 +1.408270 −4.9907 +0.6115

2,
√

3/2 −1.562347 −5.6925 −1.7706

2,
√

3/2 −0.104354 −7.7678 −0.1576

2,
√

3/2 +1.439061 −5.9707 +1.7173

2,
√

3/2 +1.894307 (1.894) −3.6587 (−3.658) +1.0855 (1.085)

4,
√

3/2 −1.440069 −7.3269 −2.0240

4,
√

3/2 −0.139596 −9.1838 −0.2353

4,
√

3/2 +1.248034 −7.6871 +1.8500

4,
√

3/2 +1.796420 −5.3768 +1.5172
2, 0.9 −1.638539 −5.8499 −2.0523
2, 0.9 −0.104570 −8.5025 −0.1889
2, 0.9 +1.533665 −6.1564 +2.0457
2, 0.9 +1.918457 −3.6658 +1.1401
4, 0.9 −1.526587 −7.5914 −2.4048
4, 0.9 −0.140354 −10.0211 −0.2805
4, 0.9 +1.357649 −8.0046 +2.2944
4, 0.9 +1.840546 −5.4133 +1.6354

Table 14. Class S2 examples.

With the pressure p0 available, its velocity u0 can be derived ((4.21)–(4.23) at N = 2)
by using (2.26)–(2.29). The half-frequency σ is determined by the vanishing normal

flow on the wall of the spheroidal cavity, Vη = 0 at η =
√

1 − ε2, which gives

A4σ
4 + 4(2m + 5)

[
(2m + 7) − 2(m + 2)ε2

]
σ 3 + 6(m + 2)

[
(2m + 5) − 2mε2

]
σ 2

− 12(2m + 5)σ − 3m = 0, (4.19)

where

A4 = −(2m + 5)(2m + 7)(m + 4) + 4(2m + 5)(m + 2)2ε2 − 4m(m + 1)(m + 2)ε4.

Several examples of the frequency 2σ together with the corresponding viscous
corrections for class S2 are shown in table 14.

There exist four different inertial waves for each wavenumber m > 0 and any given
ε. A closed form expression for σ , though complicated and lengthy, can be obtained.
Typical spatial structures of the four wave solutions obtained at ε = 0.1 and ε = 0.9
for m = 2 are shown in figures 1 and 2. By inserting the exact solution of (4.19) into
the representation of the pressure and velocity given by (4.20)–(4.23) at N = 2, we
again obtain the fully explicit analytical inertial wave solution in closed form for this
class.

It is worth noting that the solution with nearly z-independent structure is always
characterized by a slow frequency of the inertial wave (in this case, σ = −0.051 in
figure 1 and σ = −0.052 in figure 2), leading to an approximately geostrophic balance
in (1.3) when Ro → 0 and E → 0.
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Figure 1. Contours of Vφ(η, τ ) in a meridional plane for four different equatorially symmetric
inertial wave modes with N = 2, ε = 0.1 and m = 2. The upper left (right) corresponds to
σ = −0.5480(σ = −0.0509); the lower left (right) is for σ = 0.4441(σ = 0.8231). The solid
contours are for Vφ > 0 while the dashed contours are for Vφ < 0.

4.5. General explicit solutions: classes SG and AG

Guided by the key characteristics and patterns of small N solutions, for example
(4.18), we are able to obtain the general expression for p0 in explicit spheroidal
coordinates in the form

p0 =

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i(1 − σ 2)j (uv)m+2j (ητ )2i , (4.20)

for equatorially symmetric waves, where Cs
ijmN is defined by

Cs
ijmN =

[
−1

(1 − σ 2ε2)

]i+j
[2(m + N + i + j ) − 1]!!

2j+1(2i − 1)!!(N − i − j )!i!j!(m + j )!
,
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Figure 2. Contours of Vφ(η, τ ) in a meridional plane for four different equatorially
symmetric inertial waves with N = 2, ε = 0.9 and m= 2. The upper left (right) corresponds
to σ =−0.8193(σ = −0.0523); the lower left (right) is for σ = 0.7668(σ =0.9592). The solid
contours are for Vφ > 0 while the dashed contours are for Vφ < 0.

where N = 1, 2, 3, . . . . It can be proved by a direct substitution that p0 given by (4.20)
indeed satisfies the relevant Poincaré equation. From (2.26)–(2.29), we can then derive
the three velocity components of the general inertial wave, (Vη, Vφ, Vτ ), in spheroidal
polar coordinates valid for all possible N

Vη =
1

2w

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i−1(1 − σ 2)j−1um+2j−1vm+2j η2i−1τ 2i

× [−η2σ (2jσ + mσ + m) + 2iu2(1 − σ 2)], (4.21)

Vφ =
1

2

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i(1 − σ 2)j−1(2j + m + mσ )(uv)m+2j−1(ητ )2i , (4.22)

Vτ =
1

2w

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i−1(1 − σ 2)j−1um+2j vm+2j−1η2iτ 2i−1

× [τ 2σ (2jσ + mσ + m) + 2iv2(1 − σ 2)]. (4.23)

The value of half-frequency σ is given by solutions of the equation resulting from the

normal flow condition Vη = 0 at η =
√

(1 − ε2),

0 = m +

N−1∑
j=0

(−1)j+N

{
N![2(2N + m − j )]!(N + m)!

[2(N − j )]![2(N + m)]!j!(2N + m − j )!

}

×
[
m − 2(1 − σ )(N − j )

σ (1 − ε2)

] [
(1 − ε2)σ 2

(1 − σ 2ε2)

]N−j

, (4.24)

which is valid for all N � 1 and m � 1. For a given ε, m and N , there exist 2N

different solutions for σ corresponding to 2N different inertial waves. Evidently, exact
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m, ε 2σ Re[G] Im[G]

2, 0.1 −1.459112 −4.7728 −0.6168
2, 0.1 −0.808996 −5.6276 −0.3295
2, 0.1 −0.057720 −5.9075 −0.0389
2, 0.1 0.692980 −5.6742 0.2404
2, 0.1 1.339760 −4.9226 0.4738
2, 0.1 1.795596 −3.5622 0.6194
2, 0.9 −1.845236 −5.3356 −1.5948
2, 0.9 −1.394564 −7.7738 −2.2044
2, 0.9 −0.058606 −9.7012 −0.1088
2, 0.9 1.320647 −7.9205 2.1593
2, 0.9 1.805645 −5.5622 1.5872
2, 0.9 1.956472 −3.5890 0.9689

Table 15. Class S3 examples.

solutions of (4.24) for σ in closed form exist only when N � 2; the solutions of (4.24)
for N � 3 can be readily computed numerically. For N = 3, there are six different
inertial waves for each non-zero m and a given ε. Several examples for the frequency
2σ together with the corresponding viscous corrections at N = 3, class S3, are shown
in table 15.

By the same procedure, we can also obtain the general explicit solution for
equatorially antisymmetric waves using spheroidal polar coordinates

p0 =

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i(1 − σ 2)j (uv)m+2j (ητ )2i+1, (4.25)

where Ca
ijmN is defined by

Ca
ijmN =

[
−1

(1 − σ 2ε2)

]i+j
[2(m + N + i + j ) + 1]!!

2j+1(2i + 1)!!(N − i − j )!i!j!(m + j )!

for N = 0, 1, 2, . . . and m = 1, 2, 3, . . . . Again its validity can be verified by a direct
substitution of (4.25) into the Poincaré equation. The three components of the velocity
in spheroidal polar coordinates are then derived from (2.26)–(2.29),

Vη =
1

2w

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i−1(1 − σ 2)j−1um+2j−1vm+2j η2iτ 2i+1

× [−η2σ (2jσ + mσ + m) + (2i + 1)u2(1 − σ 2)], (4.26)

Vφ =
1

2

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i(1 − σ 2)j−1(2j + m + mσ )(uv)m+2j−1(ητ )2i+1, (4.27)

Vτ =
1

2w

N∑
i=0

N−i∑
j=0

CijmNσ 2i−1(1 − σ 2)j−1um+2j vm+2j−1η2i+1τ 2i

× [τ 2σ (2jσ + mσ + m) + (2i + 1)v2(1 − σ 2)]. (4.28)
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m, ε 2σ Re[G] Im[G]

2, 0.1 −1.311554 −4.7180 −0.5595
2, 0.1 −0.512058 −5.4253 −0.2187
2, 0.1 0.361636 −5.4572 0.1138
2, 0.1 1.157165 −4.8599 0.4043
2, 0.1 1.736217 −3.5653 0.5972
2, 0.9 −1.775895 −5.5215 −1.7926
2, 0.9 −0.973353 −8.3180 −1.9136
2, 0.9 0.845594 −8.4582 1.7484
2, 0.9 1.715407 −5.7783 1.7977
2, 0.9 1.942048 −3.6170 1.0378

Table 16. Class A2 examples.

The half-frequency σ of the equatorially antisymmetric inertial waves is solutions of
the following equation

0 =

N∑
j=0

(−1)j
[2(2N + m − j + 1)]!

[2(N − j ) + 1]!j!(2N + m − j + 1)!

×
[
m − (1 − σ )[2(N − j ) + 1]

σ (1 − ε2)

] [
(1 − ε2)σ 2

(1 − σ 2ε2)

]N−j

, (4.29)

which is valid for all N � 0 and m � 1. For any given ε, m > 0 and N , there
exist 2N + 1 different solutions for σ giving 2N + 1 inertial wave modes. Exact
solutions of (4.29) for σ in closed form exist only when N � 1; but solutions of (4.29)
when N � 2 can be computed numerically. Several examples for the frequency 2σ

together with the corresponding viscous corrections at N = 2, class A2, are shown in
table 16.

For the first time, we have found a possibly complete set of the inertial wave modes
in a spheroid of arbitrary eccentricity in explicit spheroidal coordinates, which are

for each m > 0, 1 mode in class A0;
for each m > 0, 2 modes in class S1;
for each m > 0, 3 mode in class A1;
for each m > 0, 4 modes in class S2;
for each m > 0, 2N + 1 modes in class ĀG when N = 2, 3, 4, . . . ;
for each m > 0, 2N modes in class S̄G when N = 3, 4, 5, . . . .

Based on the explicit general solution of inviscid inertial waves in spheroidal
coordinates, we can prove the property (1.9) (Appendix A) and we can derive the
higher-order explicit solution taking the viscous effect into account, which is discussed
in § 5 and § 6.

5. A general solution for spheroidal Ekman boundary layer
In this section, we derive an explicit general solution for oscillatory Ekman boundary

layers in a rotating spheroid of arbitrary eccentricity. The boundary-layer solution is
required in solving the O(E1/2) interior problem. For a sufficiently small E, we may
introduce a stretched variable ξ for the boundary-layer flow in expansion (2.24),

û0 = ûτ (ξ, τ )eτ + ûφ(ξ, τ )eφ, û1 = û1(ξ, τ ), ξ = E−1/2[
√

(1 − ε2) − η]. (5.1)
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On substitution of (2.24) together with (5.1) into (2.16)–(2.18), two differential
equations for the leading-order boundary-layer flow, û0, can be deduced(

i2σ v̂2 − ∂2

∂ξ 2

)2

ûτ (ξ, τ ) + (2τ v̂)2ûτ (ξ, τ ) = 0, (5.2)

(
i2σ v̂2 − ∂2

∂ξ 2

)2

ûφ(ξ, τ ) + (2τ v̂)2ûφ(ξ, τ ) = 0, (5.3)

where v̂ =
√

1 − v2ε2 is introduced to simplify representation. It is worth noting that
the boundary-layer analysis presented in this section is valid for both axisymmetric
oscillations (m = 0) and inertial waves (m � 1).

The two fourth-order boundary-layer equations are solved subject to the eight
boundary conditions, for which the velocity conditions on the spheroidal envelope of
the cavity at ξ = 0 are

ûφ(ξ = 0) = −V S
φ (τ ), (5.4)

ûτ (ξ = 0) = −iV S
τ (τ ), (5.5)

∂2ûτ

∂ξ 2
(ξ = 0) = 2

[
σ v̂2V S

τ (τ ) − τ v̂V S
φ (τ )

]
, (5.6)

∂2ûφ

∂ξ 2
(ξ = 0) = −2i

[
σ v̂2V S

φ (τ ) − τ v̂V S
τ (τ )

]
, (5.7)

where, in the case of equatorially symmetric modes, we have

V S
φ (τ ) =

1

2

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i(1 − σ 2)j−1(1 − ε2)

i
v2j+m−1(2j + m + mσ )τ 2i , (5.8)

V S
τ (τ ) =

1

2
√

1 − v2ε2

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i−1(1 − σ 2)j−1(1 − ε2)

i

× v2j+m−1τ 2i−1[τ 2σ (2jσ + mσ + m) + 2i(1 − σ 2)v2]; (5.9)

in the case of equatorially antisymmetric modes, we take

V S
φ (τ ) =

1

2

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i(1−σ 2)j−1(1 − ε2)

i+1/2
v2j+m−1(2j+m+mσ )τ 2i+1, (5.10)

V S
τ (τ ) =

1

2
√

1 − v2ε2

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i−1(1 − σ 2)j−1(1 − ε2)

i+1/2

× v2j+m−1τ 2i[τ 2σ (2jσ + mσ + m) + (2i + 1)(1 − σ 2)v2]. (5.11)

The choice of the boundary conditions (5.8)–(5.11) ensures that the total velocity at
the outer spheroidal surface (ξ = 0) vanishes. The condition that the boundary-layer
flow (ûη, ûτ ) must remain bounded gives

ûη(ξ = ∞) = ûφ(ξ = ∞) = 0, (5.12)

∂2ûτ

∂ξ 2
(ξ = ∞) =

∂2ûφ

∂ξ 2
(ξ = ∞) = 0. (5.13)
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It is straightforward to derive the solution for the spheroidal Ekman boundary layer
satisfying (5.4)–(5.7) and (5.12)–(5.13), which is

ûτ (τ, ξ ) = 1
2
i
[
V S

φ (τ ) − V S
τ (τ )

]
exp{α1ξ} − 1

2
i
[
V S

φ (τ ) + V S
τ (τ )

]
exp{α2ξ}, (5.14)

ûφ(τ, ξ ) = − 1
2

[
V S

φ (τ ) − V S
τ (τ )

]
exp{α1ξ} − 1

2

[
V S

φ (τ ) + V S
τ (τ )

]
exp{α2ξ}, (5.15)

where α1 and α2 are defined by

α−1
1 = − 1

2|σ v̂2 + τ v̂|1/2
+

(σ v̂2 + τ v̂)i

2|σ v̂2 + τ v̂|3/2
, (5.16)

α−1
2 = − 1

2|σ v̂2 − τ v̂|1/2
+

(σ v̂2 − τ v̂)i

2|σ v̂2 − τ v̂|3/2
, (5.17)

An important feature of the Ekman boundary layer is its normal flux which can
be determined by inserting (5.1) into (2.19)

∂

∂ξ
[v̂(eη · û1)] =

∂

∂τ
(vv̂ûτ ) +

imv̂2

v
ûφ. (5.18)

A direct integration over ξ leads to the normal flux out of the spheroidal boundary
layer

(eη · û1)ξ=∞ =
−i

2v̂

∂

∂τ

{
vv̂

[(
V S

φ − V S
τ

)
α1

−
(
V S

φ + V S
τ

)
α2

]}

+
imv̂

2v

[(
V S

φ − V S
τ

)
α1

+

(
V S

φ + V S
τ

)
α2

]
, (5.19)

which provides the required boundary condition for the O(E1/2) interior problem
discussed in § 6. In deriving (5.19) from (5.18), we should first carry out derivative
with respect to τ and then perform integration over ξ .

It is well-known that the boundary-layer equation is broken down at the critical
latitudes,

τc = ± σ
√

1 − ε2

√
1 − σ 2ε2

, (5.20)

as noticed by Roberts & Stewartson (1965)(Greenspan 1968). Near the critical
latitudes ±τc, the spheroidal boundary layer is locally thickened. However, it was
suggested by Greenspan (1968) and confirmed by fully numerical solutions in rotating
spherical systems (Hollerbach & Kerswell 1995; Zhang 1995) that the breakdown does
not significantly affect the value of the viscous decay rate at an asymptotically small E.
The value of the decay rate obtained from fully numerical simulations (Hollerbach &
Kerswell 1995) agrees to within 1% with the asymptotic decay rate estimated by
neglecting the effect of the breakdown (Greenspan 1968; see also Liao et al. 2001).
An excellent agreement between the fully numerical solution and the asymptotic
solution that neglects the local breakdown of the boundary layer was also achieved
when the inertial wave is sustained by thermal convection in a rotating sphere (Zhang
1995). We therefore assume that the effect of the local boundary-layer breakdown on
the viscous correction can be neglected.
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6. Viscous effects on inertial waves and oscillations
The viscous effect takes place at the next-order perturbation, u1 and p1, in

expansions (2.22)–(2.23) for a small but non-zero Ekman number E. It should be
noted that the viscous term in (1.3) after using expansion (2.22) may be written as

E∇2ui = E1/2
[
E1/2∇2u0 + E∇2u1 + . . .

]
= O

(∣∣m2E1/2u0

∣∣E1/2
)

+ . . . . (6.1)

Equations (2.26)–(2.28) implicitly assume that the maximum wavenumber m of an
inertial wave satisfies m � E−1/2, i.e. the spatial scale of an inertial wave must be much
larger than the thickness of the Ekman boundary layer O(E1/2) (Kerswell & Barenghi
1995; Greenspan 1968). In the O(E1/2) internal problem, we must retain the term
E1/2∇2u0 when the scale is given by m =O(E−1/4) which gives rise to E1/2∇2u0 =O(1).
The O(E1/2) perturbation equations for u1 and p1 in the general form are

2iσ u1 + 2ez × u1 + ∇p1 = E1/2∇2u0 − Gu0, (6.2)

∇ · u1 = 0. (6.3)

When m � O(E−1/4), the viscous term E1/2∇2u0 in (6.2) may be neglected; it must
be retained in (6.2) when m =O(E−1/4). In a sense, the term E1/2∇2u0 in (6.2) is
associated with the internal viscous dissipation of an inertial wave for the O(E1/2)
internal problem. However, as we will show, the viscous term in (6.2) makes no
contribution in the estimate of the viscous decay rate, a consequence of the unusual
properties given by (6.5).

The solvability condition for inhomogeneous differential equation (6.2) is obtained
by multiplying it with u∗

0, the complex conjugate of u0, and integrating the resulting
equation over the spheroidal cavity V ,∫

V

[2u1 · (iσ u∗
0 − k × u∗

0) + G|u0|2] dV = E1/2

∫
V

u∗
0 · ∇2u0 dV. (6.4)

After making use of (6.3) and the fact that∫
V

u∗
0 · ∇2u0 dV ≡ 0 (6.5)

for all values of σ, N and m, which is briefly proved in Appendix A, the resulting
solvability condition leads to the viscous decay factor

G = −
[∫

V

|u0|2
]−1 ∫

S

pS
0 (τ )(eη · u1) dS, (6.6)

where
∫

S
denotes the integration over the surface of the spheroidal container, (eη · u1)

represents the boundary-layer flux given by (5.19), and pS
0 is related to the pressure

p0 evaluated on the envelope of the spheroidal cavity. For equatorially symmetric
solutions,

pS
0 (τ ) =

N∑
i=0

N−i∑
j=0

Cs
ijmNσ 2i(1 − σ 2)j (1 − ε2)iv2j+mτ 2i; (6.7)

for equatorially antisymmetric solutions, we take

pS
0 (τ ) =

N∑
i=0

N−i∑
j=0

Ca
ijmNσ 2i(1 − σ 2)j (1 − ε2)i+1/2v2j+mτ 2i+1. (6.8)
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Moreover, the volume integration in (6.6) can be carried out exactly using the general
explicit solution for u0. For equatorially symmetric modes, we obtain∫

V

|u0|2 dV = π
N∑

i=0

N−i∑
j=0

N∑
k=0

N−k∑
l=0

(−1)i+j+k+l2m+j+l−1Cs
ijmNCs

klmN (1 − ε2)i+k+1/2

×
[
(m + j + l − 1)!(2i + 2k − 1)!!Q

(1 − σ 2)2
+

8ik(2i + 2k − 3)!!(m + j + l)!

σ 2(1 − ε2)

]

×
[

σ 2(i+k)(1 − σ 2)j+l

[2(m + j + l + i + k) + 1)!!

]
, (6.9)

where we define that (−1)! = 1, (−3)!! = 1 and

Q = (2jσ + mσ + m)(2lσ + mσ + m) + (2j + m + mσ )(2l + m + mσ ).

For equatorially antisymmetric modes, we have∫
V

|u0|2 dV = π
N∑

i=0

N−i∑
j=0

N∑
k=0

N−k∑
l=0

(−1)i+j+k+l2m+j+l−1Ca
ijmNCa

klmN (1 − ε2)i+k+3/2

×
[
(m + j + l − 1)!(2i + 2k + 1)Q

(1 − σ 2)2
+

2(2i + 1)(2k + 1)(m + j + l)!

σ 2(1 − ε2)

]

×
[
σ 2(i+k)(1 − σ 2)j+l(2i + 2k − 1))!!

[2(m + j + l + i + k) + 3)!!

]
. (6.10)

After substitution of (5.19) into the solvability condition (6.6) for the O(E1/2)
interior problem, we obtain

Re[G] = π

[∫
V

|u0|2 dV

]−1 ∫ +1

−1

{√
v̂(σ v̂ + τ )(V S

φ − V S
τ )

|σ v̂ + τ |3/2

[
v
dpS

0

dτ
+

mv̂pS
0

v

]}
d τ,

(6.11)

Im[G] = π

[∫
V

|u0|2 dV

]−1 ∫ +1

−1

{√
v̂
(
V S

φ − V S
τ

)
|σ v̂ + τ |1/2

[
v
dpS

0

dτ
+

mv̂pS
0

v

]}
dτ. (6.12)

Here, we have used the fact that contribution from the α1-term in (5.19) is exactly the
same as that from the α2-term because of symmetry with respect to τ . The general
expressions (6.11) and (6.12) can be used to calculate the viscous correction for the
frequency of any inertial waves (m � 1) or axisymmetric oscillations (m = 0). The real
part of G represents the viscous decay rate of an inertial mode while its imaginary
part provides the O(E1/2) correction to its frequency. There are four different cases:

(i) Equatorially symmetric axisymmetric oscillations (m = 0). In (6.11) and (6.12),
V S

τ and V S
φ are given by (5.8)–(5.9), pS

0 by (6.7) and the half-frequency σ by (3.27).
The parameter N takes 2, 3, 4, . . . and there are 2(N − 1) axisymmetric oscillation
modes for each N .

(ii) Equatorially symmetric inertial waves (m � 1). In (6.11) and (6.12), V S
τ and V S

φ

are given by (5.8)–(5.9), pS
0 by (6.7) and the half-frequency σ by (4.24). The parameter

N takes 1, 2, 3, 4, . . . and there are 2N inertial wave modes for each m � 1.
(iii) Equatorially antisymmetric axisymmetric oscillations (m =0). In (6.11) and

(6.12), V S
τ and V S

φ are given by (5.10)–(5.11), pS
0 by (6.8) and the half-frequency

σ by (3.32). The parameter N takes 1, 2, 3, 4, . . . and there are 2N inertial oscillation
modes for each N .
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(iv) Equatorially antisymmetric inertial waves (m � 1). In (6.11) and (6.12), V S
τ and

V S
φ are given by (5.10)–(5.11), pS

0 by (6.8) and the half-frequency σ by (4.29). The
parameter N takes 0, 2, 3, 4, . . . and there are (2N + 1) inertial wave modes for each
m � 1.

The simplest solution describing inertial oscillation in a spheroidal cavity belongs
to class Ā1 whose fully explicit solution is given by (3.9)–(3.11). In this case, we have

pS
0 (τ ) =

τ

2

√
(1 − ε2)(5τ 2 − 3), (6.13)

V S
φ (τ ) = −3τ

4

(5 − 4ε2)√
(1 − ε2)

√
(1 − τ 2), (6.14)

V S
τ (τ ) = −3

4

√
1 − (1 − τ 2)ε2√

(1 − ε2)

√
(1 − τ 2)

√
5 − 4ε2, (6.15)

∫
V

|u0|2 dV =
3π(5 − 4ε2)2

35
√

(1 − ε2)
. (6.16)

Inserting (6.13)–(6.16) into (6.11) and (6.12), the resulting integration for the viscous
correction of the oscillation mode is too complicated and cannot be evaluated exactly
for any value of ε. However, when ε is sufficiently small, we obtain

Re[G] = − 16

1375
(155q1 + 31q2 + 22q3 − 22q4) − 0.7232ε2 + O(ε4)

= −3.24774 − 0.7232ε2 + O(ε4),

Im[G] = − 16

1375
(155q1 − 31q2 − 22q3 − 22q4) + 0.6110ε2 + O(ε4)

= +0.28546 + 0.6110ε2 + O(ε4),

where

q1 =

√
1 +

√
5/5, q2 =

√
25 − 5

√
5, q3 =

√
5 −

√
5, q4 =

√
5 +

√
5.

In the limit ε → 0, corresponding to the case of a sphere, we obtain G =
(−3.2477, −0.2855). This is in agreement with the numerical values obtained by
Kudlick (1966) who gave G = (−3.248, −0.2853).

Several examples of G for different classes of the inertial modes calculated from
our general expressions (6.11)–(6.12) are shown in tables 1–16. Kudlick’s numerical
results are shown in parentheses in the tables. Our results are generally in agreement
with those obtained by Kudlick (1966) (see also Greenspan 1968). Evidently, there is
a typographical error for the case with ε =

√
3/2 in class Ā1 (Kudlick gave Im[G] =

0.1584, which should be Im[G] = 1.584. Apparently, there are many other errors in
his tables. For example, all indices representing the inertial modes in his tables are
incorrect). It should be also noted that Kudlick (1966) did not derive or use any
explicit analytical solutions for p0 or (Vη, Vφ, Vτ ) for any classes of the inertial modes.
Consequently, we can only compare our general results with several numerical values
given in his three tables.

The simplest example for inertial waves is given by the spin-over mode that is
equatorially antisymmetric and m =1 at N = 0. By setting N = 0, m = 1 in pS

0 , V S
τ

and V S
φ , we obtain

σ =
1

2 − ε2
, pS

0 (τ ) = 3
2
τ
√

(1 − ε2)
√

(1 − τ 2), (6.17)
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V S
φ (τ ) = 3

4

τ (2 − ε2)√
(1 − ε2)

, (6.18)

V S
τ (τ ) = 3

4

(2 − ε2)
√

1 − ε2(1 − τ 2)√
(1 − ε2)

, (6.19)

∫
V

|u0|2 dV =
3π

10

(2 − ε2)3√
(1 − ε2)

. (6.20)

Inserting (6.17)–(6.20) into (6.11) and (6.12), the viscous correction for the spin-over
mode in a rotating spheroidal cavity of small eccentricity is

Re[G] = −3(19 + 9
√

3)

28
√

2
+

(−1039 + 171
√

3)

1232
√

2
ε2 + O(ε4)

= −2.62047 − 0.42634ε2 + O(ε4),

Im[G] = −3(−19 + 9
√

3)

28
√

2
+

(1039 + 171
√

3)

1232
√

2
ε2 + O(ε4)

= 0.25846 + 0.76633ε2 + O(ε4).

In the limit ε → 0, corresponding to the case of a sphere, we obtain Re[G] = −2.62047.
This is in agreement with that obtained by Greenspan (1968, figure 2.10) who gave
Re[G] = −2.620 and is also in agreement with the result of fully numerical simulations
by Hollerbach & Kerswell (1995) who obtained Re[G] = −2.644 at E = 10−6.5 in a
sphere.

7. Summary and remarks
We have obtained the first explicit general asymptotic solution for the axisymmetric

oscillations and inertial waves in an incompressible rapidly rotating fluid contained in
an oblate spheroidal cavity of arbitrary eccentricity. The general explicit inertial wave
solution is comprised of two parts. The first part represents the explicit analytical
solution for all the non-dissipative inertial modes in spheroidal polar coordinates
whereas the second part is given by the corresponding solution for the spheroidal
Ekman boundary layer. The solvability condition at the O(E1/2) problem leads to the
viscous correction for all the inertial modes.

The explicit spheroidal inertial modes may be used to represent a general time-
dependent velocity distribution in spheroidal systems. Consider an inviscid nonlinear
flow in a rotating spheroid driven by an external force f , which is governed by

∂u
∂t

+ 2ez × u + ∇p = f − Rou · ∇u, (7.1)

∇ · u = 0, (7.2)

subject to the boundary condition

eη · u = 0 at η =
√

1 − ε2. (7.3)

Suppose that both the force f and the flow u are equatorially symmetric. We denote
the velocity of an inertial mode in the form

UNmn(η, φ, τ, σn) = [iVηeη + Vφeφ + iVτ eτ ]exp[i(mφ)], (7.4)

where (Vη, Vφ, Vτ ) for m = 0 are given by (3.24)–(3.26), σn, n = 1, . . . , 2N, can
be tabulated using (3.27); (Vη, Vφ, Vτ ) for m � 1 are given by (4.21)–(4.23),
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σn, n = 1, . . . , 2N, can be tabulated using (4.24). In addition, an inertial mode
UNmj can be normalized such that∫

V

|UNmn|2 dV = 1. (7.5)

Solutions of (7.1)–(7.2) in an oblate spheroid may be expressed as

u(η, φ, τ, t) =
∑
m,N,n

[ZNmn(t)UNmn + c.c.] , (7.6)

where c.c. denotes the complex conjugate of the previous term. The major advantages
of the expansion are that (i) the conditions (7.2)–(7.3) are automatically satisfied
and (ii) the inertial modes are directly associated with the linear differential operator
(the left-hand side) in the equation of motion, (7.1). It follows that solutions of the
nonlinear problem in a spheroid can be obtained by solving the ordinary differential
equations,

dZNmn

dt
= (2iσn + HNmn) ZNmn + Ro

∑
N1m1n1

∑
N2m2n2

CNN1N2
ZN1m1n1

ZN2m2n2
, (7.7)

where

HNmn =

∫
V

f · UNmn dV,

and CNN1N2
involves the integral of the triple product of the inertial modes. In principle,

there are no difficulties in carrying out the integrals in (7.7) by using the explicit
solution. It thus offers an effective and straightforward way to solve this difficult
nonlinear problem in a rotating spheroid of arbitrary eccentricity. The validity of
(7.7), however, is dependent upon the important unanswered mathematical questions
(Greenspan 1968, § 2.10) regarding the completeness of the inviscid eigenfunctions and
the nature of inviscid eigenvalue spectrum. Although we have obtained the explicit
representation for all inertial modes which can be used to expand an arbitrary velocity
distribution, the important questions raised by Greenspan in 1968 are still unanswered.
We have been unsuccessful in our attempt to prove the completeness of our explicit
inertial oscillation and wave solutions. It is a very complicated and difficult task.

Our results also suggest that there is no direct relationship between a single inertial
wave given by (4.21)–(4.23) and thermal convection when the Prandtl number of the
fluid is moderate or large. Thermal convection in rapidly rotating spherical systems
is in the form of a slowly (σ � 1) travelling wave which is nearly independent of
the axis of rotation (Roberts 1968; Busse 1970; Fearn 1979; Jones, Soward & Mussa
2000). A slowly travelling and nearly geostrophic wave represents a particular mode
of the inertial waves as shown in figure 1. However, the strong phase shift of the
convective flow (Zhang 1992) seems to rule out the possibility that the convective flow
with moderate Prandtl numbers can be represented by a single inertial wave mode
that is slowly travelling and nearly geostrophic.

An intriguing and unusual property of the inertial waves or oscillations is that its
dissipation integral vanishes identically in a rotating spheroid of arbitrary eccentricity.
Despite the fact that we can prove the property (1.9) rigorously, its physical and
mathematical significance is not fully understood. Is there a physical implication in
connection with (1.9)? What is the mathematical implication regarding the vanishing
of such extremely complicated summations (see Appendix A)? Is there a simpler
mathematical proof for (1.9)?
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Appendix A
The following proves that the dissipation integral∫

V

u0 · ∇2u0 dV ≡ 0

for all inertial oscillation and wave solutions, for example, where u0 is given by
(3.24)–(3.26) for equatorially symmetric axisymmetric oscillations or by (4.21)–(4.23)
for equatorially symmetric inertial waves. It should be mentioned that we (Zhang
et al. 2001) incorrectly suggested that the above integral vanishes only for a
sphere.

We shall present a brief mathematical proof for the case of equatorially symmetric
waves because the proof for other cases is almost identical. In light of the explicit
solution, it is straightforward to carry out the relevant integrations over the spheroid,
but the resulting expression involves rather complex sums with four different indices∫

V

u0 · ∇2u0 dV =
1

4σ 2(1 − σ 2)2

[
(1 + σ 2)S1 + 2mσS2 +

(1 − σ 2)2

σ 2
S3

]
,

where

S1 =
π2m√
(1 − ε2)

N∑
i=0

N∑
k=1

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+l σ
2(i+k)(1 − σ 2)j+l(1 − ε2)i+k

(1 − σ 2ε2)i+j+k+l

× [2m(m + l + j ) + 4j l][2(m + N + i + j ) − 1]!!

[2(l + k + i + j + m) − 1]!!

× [2(m + N + k + l) − 1]!!

(2i − 1)!!(N − i − j )!i!j!(m + j )!(k − 1)!l!

(2i + 2k − 3)!!(l + j + m − 1)!

(2k − 3)!!(l + m)!(N − k − l)!
,

S2 =
π2m√
(1 − ε2)

N∑
i=0

N∑
k=1

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+l σ
2(i+k)(1 − σ 2)j+l(1 − ε2)i+k

(1 − σ 2ε2)i+j+k+l

× [2(m + N + i + j ) − 1]!!

[2(l + k + i + j + m) − 1]!!

× [2(m + N + k + l) − 1]!!

(2i − 1)!!(N − i − j )!i!j!(m + j )!(k − 1)!l!

(2i + 2k − 3)!!(l + j + m)!

(2k − 3)!!(l + m)!(N − k − l)!
,

S3 =
4π2m√
(1 − ε2)3

N∑
i=1

N∑
k=2

N−i∑
j=0

N−k∑
l=0

(−1)i+j+k+l σ
2(i+k)(1 − σ 2)j+l(1 − ε2)i+k

(1 − σ 2ε2)i+j+k+l

× [2(m + N + i + j ) − 1]!!

[2(l + k + i + j + m) − 1]!!

× [2(m + N + k + l) − 1]!!

(2i − 1)!!(N − i − j )!(i − 1)!j!(m + j )!(k − 2)!l!

(2i + 2k − 5)!!(l + j + m)!

(2k − 3)!!(l + m)!(N − k − l)!
.

If we can show that

S1 = S2 = S3 ≡ 0
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for all values of ε, m, N and σ , then the dissipation integral vanishes identically for
all the inertial waves in a rotating fluid spheroid. We present only the brief proof for
S3 ≡ 0 since proofs for S1 ≡ 0 and S2 ≡ 0 are similar.

First, we note that the indices, i, j, k, l are intimately entangled and that a direct
summation appears to be impossible. An essential step in establishing the result
S3 = 0 is to introduce two additional indices, say α and β , by considering a new sum
with six indices

PM
N =

4π2m√
(1 − ε2)3

M∑
α=0

M−α∑
β=0

ZM
α,β

N−M∑
i=1

N−M∑
k=2

N−i−M∑
j=0

N−k−M∑
l=0

× (−1)i+j+k+l σ
2(i+k+2α)(1 − σ 2)j+l+2β(1 − ε2)i+k+2α

(1 − σ 2ε2)i+j+k+l+2α+2β

× [2(m + N + i + j + α + β) − 1]!!

[2(i + α) − 1)!!(N − i − j − M)!(i − 1)!j!(m + j + β)!

× [2(m + N + k + l + α + β) − 1]!!

[2(k + α) − 3)!!(N − k − l − M)!(k − 2)!l!(m + l + β)!

× (m + j + l + β)![2(i + k + α) − 5)]!!

[2(m + i + j + k + l + α + β + M) − 1]!!
,

where the coefficients Zi,j are defined as

Z0
0,0 = 1;

ZM+1
i,0 = (−1)M+1−i (M + 1)!

(M + 1 − i)!i!
2M+1;

ZM+1
0,i = (−2)M+1−i (M + 1)!

(M + 1 − i)!i!
;

ZM+1
i,M+1−i = 2i (M + 1)!

(M + 1 − i)!i!
;

ZM+1
i,j = −2ZM

i,j + 2ZM
i−1,j + ZM

i,j−1; 1 � i � (M − 1), 1 � j � (M − i).

The precise values of the coefficients ZM
i,j are in fact not required in the proof. Clearly,

S3 and PM
N are related by

S3 = P0
N.

For the purpose of decoupling the entangled indices, we can establish the following
recurrence relation after a lengthy analysis,

P0
N =

1

(N − 1)
P1

N =
1

(N − 1)(N − 2)
P2

N = · · · =
1

(N − 1)!
PN−2

N .

When M = N − 2, the indices (i, j ) and (k, l) are decoupled such that the relevant
summations can be carried out explicitly

PN−2
N =

4π2m√
(1 − ε2)3

N−2∑
α=0

N−2−α∑
β=0

ZN−2
α,β

[2(m + N + α + β) + 3]!!

(2α + 1)!!(m + β)!

×
[

2∑
i=1

2−i∑
j=0

σ 2i(1 − σ 2)j (1 − ε2)i

(1 − σ 2ε2)i+j

(−1)i+j

(i − 1)!j!(2 − i − j )!

]
Wαβ(σ, ε),
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where Wαβ(σ, ε) is a function of σ and ε. Here, PN−2
N is identically zero because

2∑
i=1

2−i∑
j=0

[
σ 2i(1 − σ 2)j (1 − ε2)i

(1 − σ 2ε2)i+j

] [
(−1)i+j

(i − 1)!j!(2 − i − j )!

]
≡ 0.

This implies, by the recurrence relation, that S3 ≡ 0.
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